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Part IV: HFR



Heterogeneous Face Recognition (HFR)

® Problem of matching faces across different modalities

® Several specific HFR problems
[ VIS vs. Sketch

VIS vs. NIR

VIS vs. 3D

VIS vs. Video

Cross-Resolution

0 etc.

O OO .

® The primary approaches

[l to extract common latent features between different modalities, so that a classifier trained
on one modality may generalize to another



® An overview of generative HFR that can be used for face
matching between different modalities

Table 16 Overview of deep learning methods for heterogeneous face recognition

Algorithm Model Description
; ' A . A generative model; Extract an unified representation of data with
St s Sy ), DR multiple modalities; Fuse the features together
Use CNNs to extract complementary facial features from multimodal
Ding and Tao (2015) CNNs+SAE  data; Features are concatenated to form a high-dimensional feature;
Use SAE to compress dimension
Extract Gabor features at localized facial points; Use RBMs to learn
Yi et al (2015) RBMs shared representations locally and connected together; Further
processed by PCA
Riggan et al (2015) AE A coupled AEs for learning a target-to-source image representation
A multi-view deep network including view-specific sub-network
Kan et al (2016) Deep Net (removing view-specific variations) and common sub-network
(finding common representation shared by all views)
Saxena and Verbeek (2016) CNN Explore di_ﬂ'erent metric.lgarning strategies to reduce discrepancies
etween different modalities
o A coupled DL approach:; Transform HFR problem into homogeneous
Wa'at al (20170) CNN face matching problem by seeking a shared feature space
” g Combine the generative capacity of conditional GAN and the
Zhang ot a1 (2017c) GAN-+CONN discriminative feature extraction of DCNN for crossmodality learning
An adversarial discriminative feature learning framework to close
Song et al (2017) GCAN the gap between sensing patterns of different face modalities on both

raw-pixel space and compact feature space




[0 MM-DFR (Ding and Tao, 2015) --see Hybrid

¢/ integrated a set of elaborately designed CNNs and a three-layer SAE
¢/ The CNNs extract complementary facial features from multimodal data

v/ the extracted features are concatenated to form a high-dimensional feature vector, whose
dimension is compressed by the SAE
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Fig. 2. Flowchart of the proposed multimodal deep face representation (MM-DFR) framework. MM-DFR is essentially composed of two steps: multimodal
feature extraction using a set of CNNs and feature-level fusion of the set of CNN features using SAE.

Ding C, Tao D (2015) Robust face recognition via multimodal deep face representation. IEEE trans on Multimedia
17(11):2049-2058



[ Riggan et al (2015): ---see AE

Riggan BS, Reale C, Nasrabadi NM (2015) Coupled
auto-associative neural networks for heterogeneous face

¢/ A coupled AEs for learning a target-to-source image represeffeasition. IEEE Access 3:1620-1632

v/ A cross-modal transformation is learned by forci
networks to be as similar as possible, while simu
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FIGURE 5. A CpAE is a pair of AEs where the hidden units (latent
features) are coupled. The latent features, zy and zy, are computed from
the source and domain inputs, X and y, and the encoder parameters:
Wy, by and Wy, by. Additionally, source and domain reconstructions,

X and ¥, are computed using the latent features and decoder

parameters: W), b} and W, bj,.
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FIGURE 6. A stacked CpAE is a pair of stacked AEs with one (or more)
coupled layers of hidden units. As shown, a subsequent CpAE is trained
using the hidden units from the previous CpAE. For convenience, we have

dropped the decoders.
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0 Wuetal (2017b)

VA coupled Deep Learning approach Algorithm 1 Coupled Deep Learning (CDL) Training.

¢/ Transform HER problem into homogeneous face  Input: Training set: NIR images I, VIS images Iy, the
matching problem by seeking a shared feature learning rate cv. the ranking threshold m and the trade-
space off parameters A, A1, Aa.
Output: The CNN parameters ©.
1: Initialize parameters ©, Wy, Wy, by pre-trained VIS

¢/ Employ light CNN as the basic network model:

¢/ To address the small-scale data for NIR-VIS 2: fort=1,...,Tdo . .
training, firstly train a CNN on the large visible 3:  Forward propagation to obtain Jrelevance and Jranking!
light face dataset and then fine-tune the NIR-VIS ~ 4 Compute gradients according to Eq. (15). Eq.

one on the pre-trained visible light face model and Eq. (17):

. Fix ©, Wy, Wy
v/ Based on the basic network, develop a coupled & Update T by Eq. 3):
deep learning (CDL) framework for NIR-VIS face 7. Backward propagation for ©, Wi, Wy :
8

N

recognition . Fix Wy, Wy.T
¢/ Combine the softmax term with relevance 9 _Update © by Eq. (I5):
constraints and cross modal ranking term as the 10: Fixo,TI
supervised signal 11: Update Wy, Wy by Eq. (T6) and Eq. (17):
12: end for:
13: Return ©;

Wu X, Song L, He R, Tan T (2017b) Coupled deep learning for heterogeneous face recognition. arXiv preprint arXiv:170402450



[0 Saxena and Verbeek (2016)

v/ Explore different metric learning strategies to reduce discrepancies
between different modalities

O NIR-VIS face recognition
O VIS-Sketch

Layer (C11 [C12|P1|C21|C22| P2 |C31|C32| P3 |C41|C42| P4 |C51|C52| P5 S
Filters| 32 | 64 |64 | 64 | 128 [ 128 96 | 192 |192| 128 | 256 | 256 | 160 | 320 | 320 | 10,575

Fig. 2. CNN architecture: convolutions (C) use 3 x 3 filters and stride 1, max-pooling
(P) act on 2 x 2 regions and use stride 2. The final soft-max classification layer is
denoted as S.

Saxena S, Verbeek J (2016) Heterogeneous face recognition with cnns. In: Computer Vision-ECCV Workshops,
Springer, pp 483-491



0 Kan et al (2016): multi-view deep Fisher Loss

network (MvDN) r

¢/ To eliminate the complex (maybe even highly

nonlinear) view discrepancy for favorable @ O O O]

cross-view recognition

. o g
v/ seeks for a non-linear discriminant and 5 T
view-invariant representation shared between @ (el ) Q)
multiple views —
. N
¢/ consists of two sub-networks
o view-specific sub-network: attempt to /nultiplexe;\
remove view-specific variations
o common sub-network: attempt to obtain £ / . \\\ £
common representation shared by all views 1 e I —~ y
0500 6000 OT00
T T !
( X ) ( i a6 T ) | 7] E' ) ( i Jooof % ) ( j ( Yanze ]
view 1 VIEW 7 VIEW V
o Figure 1. An overview of Multi-view Deep Network (MvD-
Kan M, Shan S, Chen X (2016) Multi-view deep network for N). MvDN st G Fonstaarks. the v ifi b
cross-view classification. In: Proceedings of the IEEE Conf. on )- Mv COnsIsts © i It - i

Computer Vision and Pattern Recognition, pp 4847-4855 network f;|;—; and the common sub-network g, along with a dis-
criminant Fisher objective.



0 Zhangetal (2017¢c) --see GAN+CNN

¢/ Combine the generative capacity of conditional GAN and the discriminative feature extraction of DCNN for cross-modality

learning

Zhang W, Shu Z, Samaras D,
Chen L (2017c) Improving
heterogeneous face recognition
with conditional adversarial
networks. arXiv preprint
arXiv:170902848
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Figure 1: Overview of the proposed CNN models for heterogeneous face recognition. Note
that (1) depth recovery is conducted only for testing; (2) the final joint recogniti1%n may or
may not include color based matching, depending on the specific experiment protocol.
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Figure 3: Training procedure of the cross-modal CNN model. Models in the dashed box are
pre-trained using 2D and 2.5D face images individually.

e Once a pair of unimodal models for both views (depth and color) are trained, the
modal-specific representations, {X,Y}, can be obtained after the last fully
connected layers

e a joint supervision is required to enforce both correlation and distinctiveness
simultaneously
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0 Song et al (2017)

v An adversarial discriminative
feature learning framework

v’ close the gap between sensing
patterns of different face
modalities on both raw-pixel space
and compact feature space

v/ integrates cross-spectral face
hallucination and discriminative
feature learning into an end-to-end
adversarial network

e In the pixel space:

O use generative adversarial networks to perform
cross-spectral face hallucination. An elaborate
two-path model is introduced to alleviate the lack of
paired images, which gives consideration to both
global structures and local textures.

e In the feature space:

O an adversarial loss and a high-order variance
discrepancy loss are employed to measure the global
and local discrepancy betwéen two heterogeneous
distributions respectively.

O These two losses enhance domain-invariant feature
learning and modality independent noise removing

Overall architecture
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Figure 1: The proposed adversarial discriminative HFR
framework. Adversarial learning is employed on both raw-
pixel space and compact feature space.

Song L, Zhang M, Wu X, He R (2017) Adversarial discriminative heterogeneous face recognition. arXiv preprint arXiv:170903675 12



* There are some typical Heterogenous Face Recognition

0 Still-to-Video
O NIR/IR-VIS
U Photo-Sketch
0 others

NIR/IR-VI

wn

O = N W & U O N @

Photo-Sketc

Number of Papers

Still-to-Video FR  NIR/IR-VIS FR  Photo-Sketch FR Other HFR
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o Still-to-Video Face Recognition (S2V)

® S2V face recognition has real-world applications

® Usually, the gallery set has higher resolution still images
® while the probe is video clips with lower resolutions

0 Zhu et al (2015)

¢/ addressed the S2V face recognition problem as heterogeneous face matching

¢/ used a domain adaptation method for S2V

14



® Some deep methods have been proposed to bridge
the gap between these two modalities

Table 17 Overview of deep learning methods for S2V face recognition

Algorithm Model Description

Zhu and Guo (2016) CNN Study the choice of different similarity measures for face matching

Parchami et al (2017b) CNN+AE  Supervised AE to generate canonical representations from video ROIs

Lin et al (2017) CNN Present a pairwise similarity measure unified with feature learning

Savchenko and Belova (2017) CNN Handle SQY for' sma,ll. sample size problem based on computation of distances
between high-dimensional deep bottleneck features

Bao et al (2017) CNN Transfer still and video face images to an Euclidean space; Use Euclidean

metrics to measure the distance between still and video images

15



0 CFR-CNN (Parchami et al, 2017Db)

v/ an efficient Canonical Face Representation CNN for S2V face recognition

v/ uses a supervised autoencoder network to generate canonical face representations from video regions of interest

v/ consists of two major components:
oautoencoder : to learn discriminant face
embeddings, and to reconstruct a
high-quality canonical ROls
oclassification networks: matches the face
embeddings for a pair of reference still and
probe video ROIs

Parchami M, Bashbaghi S, Granger E, Sayed S (2017b) Using deep
autoencoders to learn robust domain-invariant representations for
still-to-video face recognition. In: Advanced Video and Signal Based
Surveillance, Intl. Conf. on, IEEE, pp 1-6
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| Autoencoder

>

Autoencoder

Fullv-connected network

| Probe embedding | | Still embedding | 12256

Concatenation

e

1x128

1x32

Matching
score

Figure 3: Block diagram of the proposed CFR-CNN.



® autoencoder
¢/ learn discriminant face embeddings

¢/ reconstruct a high-quality canonical ROls
o frontal, well-illuminated, less blurred faces with neutral expression
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Figure 1: Block diagram of the proposed autoencoder network in the CFR-CNN.
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0 Linetal (2017)

v/ presented a pairwise similarity measure and unified it with feature representation learning via DCNN

¢/ This model can be used to handle S2V problem
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Fig. 3. Deep architecture of our similarity model. This architecture is comprised of three parts: domain-specific sub-network, shared sub-network and
similarity sub-network. The first two parts extract feature representations from samples of different domains, which are built upon a number of convo-
lutional layers, max-pooling operations and fully-connected layers. The similarity sub-network includes two structured fully-connected layers that

incorporate the similarity components in Eqgn. (3).

Lin L, Wang G, Zuo W, Feng X, Zhang L (2017) Cross-domain visual matching via generalized similarity measure and feature Iearnlng trans on

pattern analysis and machine intelligence 39(6):1089-1102




0 Baoetal (2017)

v/ transferred still and video face images to an Euclidean space
v/ adopted Euclidean metrics to measure the distance between still and video images

v/ loss function are designed as a regression one to minimize the intra-class variations
while maximize the inter-class variations
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video face y . 2
‘ .
9|
Bao T, D?ng C, Karmoshi S, Zhu'l\'/I Ly Ly o 7
(2017) Video-based face recognition 1158240 3520 2880
via convolutional neural networks. In: 7 28x22x10 13x10x20
56x44x10 26x20x20
Second Intl. Workshop on Pattern
Recognition, Intl. Society for Optics and | I | I I I | | | |
Fhptanles; val T0448; p104450) Input Convl Max-pooling Conv2 Max—pooling Conv3 fel f1092 Output

Figure 1. The deep architecture of CNN for feature extraction.



0 Savchenko and Belova (2017)

v/ addressed S2V face recognition for small sample size problem

¢/ using a statistical recognition method which casts S2V into Maximum A
Posteriori estimation

20



% NIR/IR-VIS Face Recognition

® Infrared spectra have different regions:

[ reflection dominated region
v/ near infrared (NIR)
v/ shortwave infrared (SWIR) bands;

[ emission dominated thermal region
v/ midwave infrared (MWIR)
v/ longwave infra-red (LWIR) bands

® The main advantage of thermal imaging:

[ the acquisition in low light conditions where the visible light cameras cannot work

® Matching thermal face images to the visible is quite challenging, and has
made limited progress.

21



® In recent years, there has been some growing interest in
the infrared spectrum for face recognition

® Deep learning techniques have been applied

Table 18 Overview of deep learning methods for NIR /IR-VIS face recognition

Algorithm Model Description

Ghosh et al (2016) SDAE+RBM C,ross-resol'utlon near infrared face identification without any
preprocessing or enhancement

Sarfraz and Stiefelhagen (2017) DNN Trgat as a non-linear regression (perceptual mapping) directly between
visible and thermal data on the features

’ A framework by exploiting the polarization state information of

Bt b wl (201H) Ll thermal emissions to facilitate training of a discriminant classifier

Reale et al (2016) CONN Use coupled DCNN -to map VIS & NIR faces into domain independent,
latent feature space in which two types of features are compared

He et al (2017) CNN Map NIR z_md VIS images to a compact Euclidean feature space and
learn invariant features
Adopt a pre-trained VIS deep model (2 components: cross-spectral

Lezama et al (2017) CNN hallucination, low-rank embedding) to generate discriminative features
for VIS and NIR face images

Liu et al (2016¢) CNN Apply triplet loss to reduce intra-class variations among different

modalities as well as augment the number of training sample pairs

22



= Thermal-to-Visible face matching

® One type of cross-modal face recognition

® |dentify a thermal infrared (IR) face image given a gallery of visible light face
images

® The main idea is to:

[ exploit structural similarities between visible (VIS) and thermal infrared (IR) facial imagery

[ Riggan et al (2016)

v/ exploited the polarization state information of thermal emissions for polarimetric thermal-to-visible
face recognition with a polarimetric thermal imaging technique

23



0 DPM (Sarfraz and Stiefelhagen, 2017)

v’ Deep Perceptual Mapping directly learned a mapping from visible features to
thermal or polarimetric features, or vice versa.

v’ Deep neural networks can learn, to some extent, the non-linear mapping by
adjusting the projection coefficients in an iterative manner over the training set.
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Fig. 1 Deep perceptual mapping (DPM): densely computed features from the visible domain are mapped through the learned DPM network to
the corresponding thermal domain

Sarfraz MS, Stiefelhnagen R (2017) Deep perceptual mapping for cross-modal face recognition. Intl Journal of Computer Vision
122(3):426—438 24



= NIR-VIS face recognition
[l Reale et al (2016)

¢/ used coupled DCNNs to map VIS and NIR faces into a domain independent, latent feature
space in which two types of features can be compared directly

v The network structure is from

mnitialization Trainina the GooglLeNet family of
O —— r— networks (i.e. deep with small
g . .
/ \ convolutional filters)
IDNet fc6 Contrastive Loss v’ train two networks for

cross-modal verification:

o initialize these networks
as copies of IDNet, with
the exclusion of the fully
connected softmax
classifier

Initial

IDNet Params |:
Convolution

Layers

\ Casia WebFace \ HFR Dataset

Figure 3: Network Diagram

Identification Labels

NIRNet

S|9geT UOIIeIIIIA

\
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0 Liuetal (2016c)

¢/ applied the triplet loss to:

O reduce intra-class variations among different modalities

O augment the number of training sample pairs
Anchor .
Negative
VIs1
)

B @

Figure 1. NIR-VIS triplet formation. After learning, the distance
between the samples from the same ID is minimized while the
difference across domains tends to be not the leading factor. [Best
viewed in color]

Liu X, Song L, Wu X, Tan T (2016c) Transferring deep representation for nir-vis heterogeneous face recognition. In: Biometrics, Intl.

Conf. on, IEEE, pp 1-8
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v With the constraint of the triplet loss, discriminative features can be
learned to differentiate different identities no matter which modality they
belong to, NIR(_or VIS .

Input

Figure 2. The proposed CNN framework. The inputs of CNN are the prepared triplets, and the three channels share the same parameters.
After feature extraction in the final fully connected layers, the high-level features of the three layers are input to the triplet loss layer whlch
bridges the gap of NIR and VIS domains.



0 Lezama et al (2017)

v Extend a DNN model pre-trained on VIS
face images to the NIR spectrum

v’ Add two extra steps:

O VIS hallucination CNN:

= preprocess the NIR image using a CNN that
performs a cross-spectral conversion of the
NIR image into the VIS spectrum

= using the hallucinated VIS image as input to
the feature extraction DNN, instead of the raw
NIR, produces a significant gain in the
recognition performance.

O use low-rank embedding at the output layer:

= Can produces deep features for VIS and NIR
images in a common space

= A geometrically motivated transformation is
learned to restore a within-class low-rank
structure, and meanwhile introduce a
maximally separated inter-class structure.

Lezama J, Qiu Q, Sapiro G (2017) Not afraid of the dark: Nir-vis face
recognition via cross-spectral hallucination and low-rank embedding.
In: Conf. on Computer Vision and Pattern Recognition, IEEE, pp
BBOT—68 LG is wp o5 wom o W38 i om0 W 0 W50 o o W

Existing approach

NIR image
VIS-trained Matching to VIS .
R DNN o database
i |
[ | H
........ Ealion wmn wva v 9 won e vow ol wR 658 W w00 v
........ Loom o dTa a7 s o 76 a0 408, A1lh, WAE a0 W 4 whe 4T 18
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V| P |
VIS
S Low-rank
halltg:r:;\;uon embedding

:‘ Proposed scheme

Figure 1. Diagram of the proposed approach. A simple NIR-VIS
face recognition system consists in using a Deep Neural Network
(DNN) trained only on VIS images to extract a feature vector f
from a NIR image and use it for matching to a VIS database. We
propose two modifications to this basic system. First, we mod-
ify the input by hallucinating a VIS image from the NIR sample.
Secondly, we apply a low-rank embedding of the DNN features
at the output. Each of this modifications produces important im-
provements in the recognition performance, and an evepgreater
one when applied together.



He R, Wu X, Sun Z, Tan T (2017) Wasserstein cnn:
Learning invariant features for nir-vis face recognition. arXiv
D He et al (201 7) preprint arXiv:170802412

v/ mapped both NIR and VIS images to a compact Euclidean feature space and learned invariant features
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Fig. 1. An illustration of our proposed Wasserstein CNN architecture. The Wasserstein distance is used to measure the difference between NIR
and VIS distributions in the modality invariant subspace (spanned by matrix 1¥7). At the testing time, both NIR and VIS features are exacted from
the shared layer of one single neural network and compared in cosine distance. 29



Galea C, Farrugia RA (2017) Forensic face photo-sketch recognition
using a deep learning-based architecture. IEEE Signal Processing
Letters 24(11):1586-1590

% Photo-Sketch Face Recognition

[ Galea and Farrugia (2017)
¢/ A model which is pre-trained for face photo recognition and tuned

for photo-sketch matching by applying the transfer learning

' 1
3D
morphable
model| _
fitting to Generation
I

each face of synthetic

‘ . photo and Wragne
sketch
image
—
—
‘l
d

Fig. 1. Proposed architecture, where synthetic images are created and used to train the DCNN in [9] via transfer learning. The first and second rows contain
original and synthesised photos and sketches, respectively, of a subject in the PRIP-HDC forensic sketch database [12]. Column ‘1° contains images fitted with
a 3-D Morphable model, and “2” to “645™ are synthesised versions of “17. The synthetic sketch of variation “2” (represented with a green border) has a more
rounded appearance than the original sketch (red border) and bears a subjectively better similarity to the corresponding original photo (dashed orange 0rder). As
shown in the yellow box, the DCNN is first trained for classification and then tuned for verification using triplet embedding.

Deep Convolutional Neural Network (DCNN)

VGG-Face
Classification
No. of layers: 16
Objective function: Softmax log-oss Verification

Learning Rate: 107 2 No.of [avers: 1
[Since the outputs of the last layer are [ L T * e \
LUbjeclive funclion.
the classes of the input images, which Objective fun':FtlonE Tr‘P:]eIZ?IStance

from those used to train
VGG-F4d the layer is re=initiallsed
and its learning rate decupled)]




0 Lin et al (2017)

¢/ present a pairwise similarity measure

Lin L, Wang G, Zuo W, Feng X, Zhang L (2017) Cross-domain visual
matching via generalized similarity measure and feature learning. trans
on pattern analysis and machine intelligence 39(6):1089—1102

¢/ unify it with feature representation learning via deep convolutional neural networks,

v/ used for photo-sketch face matching
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Fig. 3. Deep architecture of our similarity model. This architecture is comprised of three parts: domain-specific sub-network, shared sub-network and
similarity sub-network. The first two parts extract feature representations from samples of different domains, which are built upon a number of convo-
lutional layers, max-pooling operations and fully-connected layers. The similarity sub-network includes two structured fully-connected layers that

incorporate the similarity components in Eqn. (3).
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«* Other Heterogeneous Face Recognition

[0 Simon et al (2016):

v/ applied deep CNNs to the tri-modal RGB-D-T based facial recognition problem

The result shows that:
¢/ in most cases, using such
3 modalities provides a
better identification
performance than an
isolated or bimodal
approach.

Sim’on MO, Corneanu C, Nasrollahi K,
Nikisins O, Escalera S, Sun'Y, Li H, Sun Z,
Moeslund TB, Greitans M (2016) Improved
rgb-dt based face recognition. let Biometrics
5(4):297-303
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Figure 1: The block diagram of the proposed system. RGB, Depth and Thermal captures of the face are
used for training modality specific CNNs for deciding if two samples are from the same persafi or not. The
results are fused with a HOGOM trained WNNC and SVM.




0 Liu et al (2017a)

¢/ two deep CNNs based approach for Depth-to-RGB face recognition
¢/ employ lightCNN as the baseline

¢/ In order to enable LightCNN to extract discriminative features from both RGB and Depth face
images, the image-mixing approach simply mixes the RGB and Depth face images to form a
single training set. This training set is then used to finetune the original LightCNN

¢/ Once the LightCNN is finetuned by the mixed training set of RGB and Depth face images, it
can be used to extract features from RGB or Depth face images by exporting the output of the
FC1 layer.

¢/ Based on the extracted features, the Cosine distance metric [21] is used to measure the
similarity between a pair of RGB and Depth face images.

Liu H, He F, Zhao Q, Fei X (2017a) Matching depth to rgb for boosting face verification. In: Chinese Conf. on Biometric
Recognition, Springer, pp 127-134 33
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Fig. 2. Matching Depth to RGB face images, (a) is Image-Mixing Approach, (b) is
Image-Fusion Approach. Note that RGB images are converted to gray images. 34



Closed-Set vs. Open-Set Face Recognition

® Face verification (FV)
[ to determine whether a pair of face images belongs to the same subject

® Face identification (FI)
[ a one-to-many matching

[ usually assuming the query person was already enrolled in the gallery, which is a
closed-set problem

® \Watch-list

[ similar to face identification

[ but it does not guarantee all query subjects are already registered in gallery, which is an
open-set problem
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* |In the real world, it is normal to treat Fl as an open-set problem
* Although FV or closed-set Fl has gained good performance,
open-set FI is still a challenge
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® Open-Set vs. Closed-Set

Face Recognition
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Figure 1: Comparison of open-set and closed-set face recognition.
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[ Gunther et al (2017)

¢/ evaluated the challenges for unconstrained open-set face recognition

¢/ Although face verification or closed-set face identification have surpassed human capabilities on
some datasets, open-set identification is much more complex as it needs to reject both unknown
identities and false accepts from the face detector

¢/ open-set face recognition is currently weak and requires much more attention

[ Vareto et al (2017)

¢/ combined hashing functions and classification methods to estimate when probe samples are
known (i.e., belong to the gallery set)

¢/ They did experiments with partial least squares and neural networks

¢/ and showed how response value histograms tend to behave for known and unknown individuals
whenever they test a probe
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[0 Wang et al (2017b) --—-see Video

¢/ built a DCNN framework with a triplet supervisory signal
v/ to identify few suspects from the crowd in real time for public video surveillance

CovN Embedding

a Wt ‘
triplet selection pdate el »- 2
<€ back
propagation scror: &
gradient . hcruant
triplet loss

Fig. 2. End to end deep embedding training with triplet loss

Wang G, SunY, Geng K, Li S, Chen W (2017b) Deep embedding for face recognition in public video surveillance. In: Chinese
Conf. on Biometric Recognition, Springer, pp 31-39 39



