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® |n addition to general FR, there are some FR problems that researchers
address specifically with deep learning methods

® \We discuss these problems:
[l Some challenges in still image based FR
v/ pose variations, cross-age, illumination changes, etc.
[ Video FR
0 3D FR
[ Heterogeneous FR
v’ NIR/IR-VIS

v/ photo-sketch
v/ still-to-video

Number of Papers Uisng Deep Learning

= Some challenges in still image based FR
= Video face matching

= 3D face matching

= heterogeneous face matching



Challenges in Still Image based FR

® In the past decade, face recognition has made significant progress in
controlled scenarios, e.g., mugshot

® Recently, researchers focus more on unconstrained face recognition,
containing various poses, illuminations, expressions, ages and occlusions

Number of Papers Using Deep Methods

Pose Variations |

Cross-Age FR

lllumination Changes

Facial Expression Variations

Facial Occlusions

Low Resolution Face Images
Facial Makeup IS
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o Pose Variations

e Still a challenge for FR, even with deep learning
® Pose-Invariant Face Recognition (PIFR) is far from being solved
® Existing PIFR methods:

[ employ face frontalization to synthesize a frontal face
[ learn a pose-invariant representation directly from non-frontal face images
[ others




Table 10 Overview of deep learning methods for handling pose variations

Synthesize a

Algorithm Model Description
Frontal Face

(Kan et al (2014)
Zhu et al (2013)
Zhu et al (2014a)

SAE Stacked progressive AE; Transform faces from non-frontal to frontal progressively
AE-like  Reconstruct corresponding face under frontal-view
CNN Rotate a face with any pose to a target pose

Yim et al (2015) DNN Rotate the arbitrary pose face into several target pose faces
DNN Transform non-frontal faces into frontal by learning displacement field
SME Extract pose-invariant fearue using an sparse many-to-one encoder framework

Xu et al (2017b) DNN 3D-aided 2D FR system; Robust to pose variations as large as 90°

/ Peng et al (2017) DNN .Learn. r?construcuon—based pose-invariant feature without extensive pose coverage
_ in training data
Learn Pose-Invariant L A joint model for face and pose verification tasks; Explicitly discourage the
; . \_Lu et al (2017a) CNN inf o Sl . A denti ificati .

Repr‘esenfc‘hon Dlr'ecﬂy - mformation a.anng LWO.CI.I p.oae.an 1dentity \./crll cation metrics -

Seo et al (2015) CNN 4 tasks; Two is used to minimize intra-pose variation and preserve pose continuity
\ Almageed et al (2016)] CNN Multiple pose-aware DCNN models reducing sensitivity to pose variations

Masi et al (2016) CNN Use multiple pose-specific models and render face images to handle pose variation

Yin and Liu (2017 CNN A pose-directed multi-task CNN; Group poses to learn pose-specific identity feature

Tran et al (2017 GAN Jointly merge face frontalization and pose-invariant identity representation learning
Grm et al (2016) CNN PISI; Use a DPSL strategy to handle large pose variations
Lin and Fan (2011) DBN Deal with the non-linearity caused by pose variations

Others
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= Synthesize a Frontal Face
The ability of generating a realistic frontal face can be beneficial to deal with
pose to some extent.
Table 10 Overview of deep learning methods for handling pose variations
Syn‘l’hesize a Algorithm Model  Description
Frontal Face Kan et al (2014) SAE Stacked progressive AE; Transform faces from non-frontal to frontal progressively

Zhu et al (2013)
Zhu et al (2014a)
Yim et al (2015)
Hu et al (2017b

AE-like Reconstruct corresponding face under frontal-view

CNN Rotate a face with any pose to a target pose

DNN Rotate the arbitrary pose face into several target pose faces

DNN Transform non-frontal faces into frontal by learning displacement field



0 Kan et al (2014)

used multiple progressive autoencoders to do face frontalization
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Figure 1. The schema of the proposed Stacked Progressive Auto-Encoders (SPAE) network for pose-robust face recognition. We illustrate an exemplar
architecture of the stacked network with L = 3 hidden layers, which can deal with poses in yaw rotation within [-45°, +45°]. In training stage of our SPAE,
each progressive auto-encoder aims at converting the face images at large poses to a virtual view at a smaller pose (i.e., closer to frontal), and meanwhile
keeping the face images with smaller poses unchanged. For instance, for the first progressive AE demonstrated in this figure, only images with yaw rotation
larger than 30° are converted to 30°, while other face images with yaw rotation smaller than 30° are mapped to themselves. Such a progressive mode
endows each progressive AE a limited goal matching its capacity. In the testing stage, given an image, it is fed into the SPAE network, and the outputs of
the topmost hidden layers with very small pose variations are used as the pose-robust features for face recognition.

pose
robust feature

————

Kan M, Shan S, Chang H, Chen X (2014) Stacked progressive autoencoders (spae) for face recognition across poses. In: Proceedings of the IEEE
Conf. on Computer Vision and Pattern Recognition, pp 1883—-1890

0 Face Identity-Preserving (FIP) (Zhu et al, 2013)
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Figure 3. Architecture of the deep network. It combines the feature extraction layers and reconstruction layer. The feature extraction layers include three
locally connected layers and two pooling layers. They encode an input face x? into FIP features x3. x1, x2 are the output feature maps of the first and
second locally connected layers. FIP features can be used to recover the face image y in the canonical view. ¥ is the ground truth. Best viewed in color.

Zhu Z, Luo P, Wang X, Tang X (2013) Deep learning identity-preserving face space. In: Proceedings of the IEEE Intl. Conf. on Computer Vision, pp1>0
113-120



0 Multi-View Perceptron 0 Controlled Pose Feature (CPF)

(MVP) _
(Zhu et al, 2014a) (Yim et al, 2015)
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quru l The inputs ( ﬁr.vr column) alul the multi-view outputs (remaining columns) of two identities. The first
in]mt is from one identity and the last two inputs are from the other. Each reconstructed multi-view image (left) Figure 1. Conceptual diagram of our proposed model. The Input
has its ground truth (right) for comparison. The extracted identity features of the inputs (the second column), image under an arbitrary pose and illumination is transformed into

and the view features of both the inputs and outputs are plotted in blue and orange, respectively. The identity
features of the same identity are similar, even though the inputs are captured in diverse views, while the view

another pose image. The Remote Code represents the target pose

features of the same viewpoint are similar, although they are from different identities. The two persons look code corresponding to the output image. By interacting between
similar in the frontal view, but can be better distinguished in other views. the input image and the Remote Code, our model produces desired
pose image.

Yim J, Jung H, Yoo B, Choi C, Park D, Kim J (2015) Rotating
your face using multi-task deep neural network. In:
Proceedings of the IEEE Conf. on Computer Vision angl
Pattern Recognition, pp 676—-684

Zhu Z, Luo P, Wang X, Tang X (2014a) Multi-view perceptron: a deep
model for learning face identity and view representations. In: Advances
in Neural Information Processing Systems, pp 217-225

0 Hu et al (2017b)

[ proposed an end-to-end deep neural network

[0 used to transform a non-frontal face image into a frontal view

0 by learning the displacement field,

[0 which reflects the shifting relationship of pixels from the non-frontal face image and
the transformed frontal view

Displacement Field Network

Translation
Layer

Hu L, Kan M, Shan S, Song X, Chen X (2017b)
E—'— T *@‘M Ldf-net: Learning a displacement field network for
i ' face recognition across pose. In: Automatic Face &
| Gesture Recognition, Intl. Conf. on, IEEE, pp 9-16

Fig. 2. Schema of our method, LDF-Net. LDF-Net is an end-to-end method
to learn the transformation from a non-frontal face image to a frontal one,
composing of a displacement field network F and a translation layer T.
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= Learn Pose-Invariant Representation Directly

® Focuses on learning a pose-invariant representation directly from
non-frontal face images through:

[ either one joint model or
[ multiple pose-specific models

( Zhang et al (2013
Xu et al (2017b)

/ Peng et al (2017)
RLear‘n Pc;siTIn\gx.man:I | Lu et al (2017a)
epresentation Directly PSeo ot al (2015)

\ Almageed et al (2016)
Masi et al (2016)

\_Yin and Liu (2017)

One joint model

[0 RF-SME (Zhang et al, 2013)

SME
DNN

DNN

CNN

CNN
CNN
CNN
CNN

¢/ Random faces guided sparse many-to-one

encoder

v/ used a sparse many-to-one encoder to
extract discriminative features

Zhang Y, Shao M, Wong EK, Fu Y (2013) Random faces guided

sparse many-to-one encoder for pose-invariant face recognition.

In: Proceedings of the IEEE Intl. Conf. on Computer Vision, pp

2416-2423

Extract pose-invariant fearue using an sparse many-to-one encoder framework
3D-aided 2D FR system; Robust to pose variations as large as 90°

Learn reconstruction-based pose-invariant feature without extensive pose coverage
in training data

A joint model for face and pose verification tasks; Explicitly discourage the
information sharing between pose and identity verification metrics

4 tasks; Two is used to minimize intra-pose variation and preserve pose continuity
Multiple pose-aware DCNN models reducing sensitivity to pose variations

Use multiple pose-specific models and render face images to handle pose variation
A pose-directed multi-task CNN; Group poses to learn pose-specific identity feature
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Figure 1. Framework of random faces guided sparse many-to-one
encoder. Each unique “ID” has many facial images in different
poses. We feed them into the single-hidden-layer neural network,
i.e., the encoder, and set the target values to be random faces (RF).
We design D encoders and therefore have D random faces for
each ID. The concatenated nodes in hidden layers compose the
high-level pose-invariant feature (red nodes in the dash area). 14



0 Xu et al (2017b)

v/ proposed a 3D-aided 2D face ([ G 9 (" Roconsinct ) (" thiexures )

recognition system

Xu X, Le H, Dou P, Wu Y, Kakadiaris 1A
(2017b) Evaluation of 3d-aided pose

invariant 2d face recognition system. In:

Proc. Intl. Joint Conf. on Biometrics,
Denver, Colorado

[ Peng et al (2017)
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Figure 3: Depiction of the whole pipeline (follow the arrow in the middle) of 3D2D-PIFR. The rounded rectangles represent
different modules. Dashed arrows represent the workflow. The enrollment encompasses the modules listed. A face first is
detected then is transferred to localize landmarks. A 3D model is constructed directly from a 2D image with a bounding box.
With 2D landmarks and a 3D model, a 3D-2D projection matrix can be estimated. The frontalized image and occlusion map
are generated according to the 3D model and projection matrix. The pose robust features are extracted from these images
along with occlusion encoding. The matching step computes features from visible parts and outputs a similarity score.

v designed a reconstruction loss to regularize identity feature learning
v’ adopted a data driven synthesis strategy to enrich the diversity of poses
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Figure 2. An overview of the proposed approach. (a) Pose-variant fuce generation utilizes a 3D facial model to synthesize new viewpoints
from near-frontal faces. (b) Rich feature embedding is then achieved by jointly learning the identity and non-identity features using
multi-source supervisions. (c) Finally, Disentangling by reconstruction is applied to distill the identity feature from the non-identity one for
robust and pose-invariant representation.

Peng X, Yu X, Sohn K, Metaxas DN, Chandraker M (2017) Reconstruction-based disentanglement for pose-invariant face

recognition. intervals 20:12
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multiple pose-specific models

0 Yin and Liu (2017)

v/ used multi-task CNN to extract pose-robust face features

—_— [ — identity
/ classification

w? PIE-invariant

identity features
- —_ g —>  DoOsc
PIE -variant entangled classification
training data features

weights in  disentangled
FC layer features

Fig. 1. We propose MTL for face recognition with identity classification as
the main task and PIE classifications as the side tasks (only pose is illustrated
in this figure for simplicity). A CNN framework learns entangled features from
the data. The weight matrix in the fully connected layer of the main task is
learnt to have close-to-zero values for PIE features in order to exclude PIE

Fig. 4. The proposed pose-directed multi-task CNN aims to learn pose- yariations, which results in PIE-invariant identity features for face recognition.
specific identity features jointly for all pose groups. -

/ Pose-Specific Identity Features /

Yin X, Liu X (2017) Multi-task convolutional neural network for pose-invariant face recognition. IEEE trans on Image Processing 17

» Synthesize a Frontal Face & Learn
Pose-Invariant Representation Directly

[ Tran et al (2017)

v/ jointly merge face frontalization and
ose-invariant identity representation

earning s*

Identity Representation

¢/ through a Disentangled Representation
learning-GAN

Figure 1: With one or multiple face images as the input, DR-GAN
can produce an identity representation that is both discriminative
and generative, i.e., the representation demonstrates superior PIFR
performance, and can synthesize identity-preserving faces at target
poses specified by the pose code.

Tran L, Yin X, Liu X (2017) Disentangled representation learning gan for pose-invariant face recognition. In: CVPR,
vol4,p7 18



Grm et al (2016) CNN PISI; Use a DPSL strategy to handle large pose variations
Others — Lin and Fan (2011) DBN Deal with the non-linearity caused by pose variations

= Others
0 Grm et al (2016)

¢/ Avalue of index close to 1: same subject
¢/ Avalue close to 0: different subjects

1st order convolutional 2nd order convolutional Fullv-toiificctod
Input image pair features(182*86*1*48) features(81*33*1*48) yla s
(192%96) ’[ a8 (11,11) - shaped y

48 (11,11) - shaped
convolutional kernels

onvolutional kernels

(500)

‘x‘”similarity
MaxPooling of 5
(2,2)-segments b index

/

MaxPooling of
(2,2)-segments

Fig. 3. The network architecture of the PISI (pose-invariant similarity index) model. The model exploits our DPSL strategy (deep pair-wise
similarity learning) and takes two grayscale facial images with different poses as input and outputs a similarity index. The numbers in the
brackets above the layers stand for the dimensionality of the layer outputs. Note that the outputs of the convolutional layers shown in the
figure are only of an illustrative nature.

Grm K, Dobrisek S, Struc V (2016) Deep pair-wise similarity learning for face recognition. In: Biometrics and Forensics, Intl. WorkshoH)9
on, IEEE, pp 1-6

%* Cross-Age Face recognition

® Facial aging is also a challenge in FR
e \WVith aging, the facial appearance can change significantly

® Some representative methods learn age-invariant features directly or indirectly

Table 11 Overview of deep learning methods for cross-age face recognition

Algorithm Model Description

Li et al (2015b) CNN Deep joint metric learning framework to learn age-invariant features

Wen et al (2016a) CNN A latent fa.c.tvor ggxdod CNN; Construct latent identity analysis (LIA) module to help
extract age-invariant features

Zheng et al (2017) CNN An age cstlma'onn ?ask guided CNN; Learn age-invariant features on training data with
age label and identity label

Xu et al (2017a) AE Coupled AE networks to handle age-invariant FR and retrieval problem

Antipov et al (2017b) GAN Age—cGAN;. Synthesize aglng/rcj.uvcnatlon of the input face images to some predefined
age categories to handle age variant

Antipov et al (2017a) GAN Resolve the issue that Age-cGAN cannot be directly used for improving face verification

Wang et al (2017d) CNN Cros§~3g0 F\ by setting FV as primary learning task and age estimation as auxiliary
learning task

Present a distance metric optimization driven learning approach that integrates

L ool CHRSY GBN traditional steps via a DCNN

20




= Directly learn age-invariant features

0 Wen et al (2016a)
v/ A latent factor guided CNN;
v/ Construct latent identity analysis (LIA) module to help extract age-invariant features

apply LIA to update FC parameters
Convolutional Feature Learning < — ~  Age-Invariant Identity Loss

supervise

A Pair of Age-

J 0y
' Images with Ys ONvo 0 Invarian 5 E
H identity and age — me‘rh Contrastive Contrastive_Loss >3
: label H
H .
'
H Update Parameters’s ©) E
.
H : , ; Latent Factor :
H mage Pair with Convolution FC Lay. — :
E Identity label Unit ayer Bt Softmax_Loss :
! (Frozen) ¢ '
.

Lo poeen

$ TL L

3x3+1(S) 3x3+1(S) Pool5
Shared Size Shared Size 2x2+2(S)
2x2

WenY, Li Z, Qiao Y (2016a)
Latent factor guided convolutional
neural networks for age-invariant
face recognition. In: Proceedings
of the IEEE Conf. on Computer

Vision and Pattern Recognition,

pp 4893-4901 Figure 3. The al‘chnect.ure of the proposed LF-CNNs and its training process. Frozen -Ia_\'cr only pem?rms regular forward :m_dAb;wkwm'd cnlculm:pns.
but does not update their parameters (in other words, the parameters of this layers are fixed). The outside data Yj, and the training data Yj, are trained
differently. Specifically, Yi, and Yi, are used for training the convolutional unit and the LF-FC layer respectively, following different pipegaﬂ:s. The two
parallel convolution units are corresponding to a physical module in two stages (frozen and not frozen).
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[ Zheng et al (2017)
v/ An age estimation task guided CNN
v/ Learn age-invariant features on training data with age label and identity label

Zheng T, Deng W, Hu J (2017) Age Face Recognition task
estimation guided convolutional neural sroTTTTTETETEEETETEETEEITSSTS RN
network for age-invariant face recognition. In: [ subtract 1
Proceedings of IEEE Conf. on Computer : - B 1
Vision and Pattern Recognition Workshops, | Whole feature t\ :
pp 1-9 ————— e e e |\ age-invariant feature y 1
[ SRR | TRy s
Images with s
: identity and B‘.“l.c function g(.)
| age label Trammg c3
9 age feature x
Basic Training outputs whole feature 7 ,' ______ i
I Age
- Softmax
| Loss
|
N

Figure 2. The architecture of the proposed AE-CNN. The formulation we use is y = f(t — g()) as shown in (1), ¢ is the whole feature
which contains age-related factor, z is the age feature obtained in age estimation task, y is the identity-specific feature for age-invariant
face recognition, g(.) is the function to obtain age factor which degrades the performance of face recognition from age feature. f(.) is the
function to better handle the relationship between the whole feature, age feature and identity-specific feature. The age estimation task and
the face recognition task update parameters in the network at the same time. 22



0 Wang et al (2017d)

¢/ a multi-task deep neural network for cross-age face verification

v/ can effectively balance feature sharing and feature exclusion between face verification and age
estimation, by exploiting an intrinsic, shared low-dimensional representation

Wang X, Zhou Y,
Kong D, Currey J,
Li D, Zhou J
(2017d) Unleash
the black magic in
age: a multi-task
deep neural
network
approach for
cross-age face
verification. In:
Automatic Face &
Gesture
Recognition, Intl.
Conf. on, IEEE, pp
596-603
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‘ We Verification Wa
Wi W2 Whn-1 Wn Loss l

f Verification Module as Main Task e e
Cl| = = @00 ==| Fon.a = | Fon _ Fca = AgeLoss
: - >

—= ' Age Estimation Module as
The Shared Deep Module for Two Tasks Auxiliary Task

Fig. 1. The proposed joint deep network architecture is based on the Siamese deep neural network for both face recognition and age estimation. It
consists of two pipelines/tasks: (a) face recognition pipeline (b) age estimation pipeline. Given the pairwise images, the face recognition pipeline processes
the features using deep neural network (DNN) encoded as WF = [Wy,W;,--- . W,] and feed them into the last layer encoded as W, before minimizing the
face recognition error given two pairwise images using a constractive loss (Eq.3). For each image, the age estimation pipeline processes the features using
deep neural network encoded as W4 = [W,W,,--- W] and feed them into the last layer encoded as W, before minimizing the age estimation error for
each image using a cross-entropy loss (Eq.4). In the figure, we assume the DNN structure is shared among the two pipelines/tasks, i.e., W§3: W4, In our
framework, the layers Fcy —Fey are directly adapted from VGG. Fey indicates Fe7. Besides that, we designed the new layers F¢; and Fcg.

 Indirectly learn age-invariant features

[0 Antipov et al (2017b)
v/ proposed an Age-cGAN aging/rejuvenation method

v/ allowing to synthesize aging/rejuvenation of the input face images to some predefined age categories to handle age variant

I Latent Vector Approximation I Face Aging

=

Identity
ng i | Resulting face Xtarget

of age “60+"
Imtial reconstruction | Optimized reconstruction ™~
xg of age yo \ x of age yo e Gm;xlor o
yol / G . y“I G

(s

P

(@ ®)

Fig. 1. Our face aging method. (a) approximation of the latent vector to reconstruct the input image; (b) switching the age
condition at the input of the generator G to perform face aging.

Antipov G, Baccouche M, Dugelay JL (2017b) Face aging with conditional generative adversarial networks. arXiv preprint
arXiv:170201983



* Illlumination Changes

® Lighting condition is also one of the big factors for facial appearance change
and recognition performance degradation

® lllumination changes may cause huge differences of facial shading or shadow
from varying directions or energy distributions of the ambient lighting, together
with the 3D structure of faces

b7

25

® |t is possible that the difference between two images of the same person
taken under varying illumination to be greater than the difference between
images of two different persons under the same illumination

Table 12 Overview of deep learning methods for dealing with illumination changes

Algorithm Model Description

Thakare and Thakare (2011) FNN Use the normalized depth map of 3D face data to handle illumination changes
Zhu et al (2013) AE-like FIP; Reconstruct corresponding face under neutal light

Zhu et al (2014a) CNN MVP; Rotate a face with any pose and illumination to a target pose

Yim et al (2015) DNN CPF; Rotate the arbitrary pose, illumination face into several target pose faces
Choi et al (2016) CNN [Mlumination-reduced feature learning method to eliminate illumination effect

26



[ Choi et al (2016)
v/ used a DCNN model to
o eliminate illumination effect
o maximize the discriminative power of feature representation

Face image with ) DCNN learned by Step1 | ( o
<illumination variation {llumination pattern learning) iuminadion patiem )
llumination-reduced DCNN learned by Step2 Faalure represantation
face image (discriminative feature learning) P

Choi Y, Kim HI, Ro YM (2016) Two-step
‘ D:- .:I learning of deep convolutional neural
T network for discriminative face recognition
Figure 1.  FR method robust to illumination variations learned with the under varying illumination. Electronic

) Imaging 2016(11):1-5
proposed two-step learning method.

27

% Facial Expression Variations

® Facial expression changes may also impose problems for face recognition
® Facial deformations with expressions can change the appearance

® Researchers have used deep learning methods to address the expression
problems

28



0 Pathirage et al (2015)

v/ a stacked denoising autoencoder for expression-robust feature acquisition

v/ exploits contributions of different color components in different local face regions
v/ by recovering the neutral expression from various expressions,
v’ and processes the faces with dynamic expressions progressively

Pathirage CSN, Li L, Liu W, Zhang M
(2015) Stacked face de-noising auto
encoders for expression-robust face
recognition. In: Digital Image
Computing: Techniques and
Applications, Intl. Conf. on, IEEE, pp

1-8

0 Liu et al (2016a)

Fig. 4.

SFDAE Model

~

Wi,

The proposed SFDAE model where f1

> >

/“w

fi i 8:06(d)

€ R50 denotes low

dimensional noisy feature learnt at layer 1, while fo € R5° denotes the
noiseless feature learnt at layer 2 in the observed low dimensional space. We
halves the image space by 50% to constraint the model to learn an effective
low dimensional feature.
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v/ fused 2D images of a face and motion history images (MHIs), which are generated from the same face’s
image sequences with expressions to do face recognition

Face detection|

Original image
sequence

Liu J, Fang C,Wu C (2016a)
A fusion face recognition
approach based on 7-layer
deep learning neural
network. Journal of Electrical
and Computer Engineering
2016

| Align

Preprocessing

MHI
The first image in
sequence
v v

Extract features

—

Fusion features

I

|

20000
50000
10000

I

[

. - Softmax :
6-layer autoencoder ‘regression:

Deep learning neural network

FIGURE 3: Structure of our network.
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o Facial Occlusions

® The unavailability of the whole face is another challenge

® This happens when some parts of the face are missing or occluded, due to
glasses, beard, moustache, scarf, etc.

® Such a problem can affect the recognition performance

¢|: LN
ETIuIT '
| Y | S ¥ g
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0 Trigueros et al (2017)

v/ proposed a method to find out which parts of the face are more important
to achieve a high recognition rate

¢/ and use that information during training to force the CNN to learn
discriminative features from all face regions more equally,

¢/ including those that typical approaches tend to pay less attention to

Trigueros DS, Meng L, Hartnett M (2017) Enhancing convolutional neural networks for face recognition with occlusion maps
and batch triplet loss. arXiv preprint arXiv:170707923

32



< Low Resolution Face Images

® Low resolution (LR) face images can degrade the face recognition
performance significantly
0 Herrmann et al (2017)
v/ compared the performance of three types of high-resolution CNN frameworks
v/ on low-resolution face images
v/ to search the most suitable one
o Microsoft’s residual architecture (He et al, 2016)
o Google’s inception architecture (Schroff et al, 2015)
o and classical VGGFace architecture (Parkhi et al, 2015)
v/ found that the classical VGGFace architecture performs the best

3x3
3x3
00l
3x3
ol
3x3
ol
fc

(a) (b) (¢)

Fig. 1. Adapted LR networks for different architecture types: classical (a), residual
(b) and inception (c). Green background denotes downsampling layers. (Color figure

: 34
online)



o Facial Makeup

® Change the facial appearance

® Challenge the face recognition performance

35

0 Lietal(2017)

v/ proposed a bi-level adversarial network (BLAN) for makeup-invariant face verification
o Two adversarial networks are combined in an end-to-end deep network
= with one in pixel level for reconstructing appealing facial images
= the other in feature level for preserving the identity information

Real I* o Fake I F
_ (PG ) —
Light
| CNN
AL !
i |
e e Lcons-p B L cons-£ Df l— - Lps
| / F |
Real I Lignt !
CNN

Figure 2: Diagram of the proposed Bi-level Adversarial Network. I is an input image with makeup while I stands for the
corresponding non-makeup image. The generator G' learns to fool the two discriminators, where D, is on the pixel level and
Dy on the feature level.
LiY, Song L, Wu X, He R, Tan T (2017) Anti-makeup: Learning a bi-level adversarial network for makeup-invariant face verification. %lg(iv
preprint arXiv:170903654



o Mixed Variations

® Deep learning methods are good at:
¢/ dealing with nonlinear characteristics in face images

¢/ and making the extracted features more discriminative

® |In addition to focusing on one task

® there are a number of methods proposed to address more than one

challenges
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Table 13 Overview of deep learning methods for handling mixed variations

Algorithm Model Description
Zhu et al (2013 AE-like Reconstruct corresponding face under frontal-view and neural light
Pose &
A . Zhu et al (2014a) CNN Rotate a face with any pose, illumination to a target pose
illumination Yim et al (2015) DNN Rotate the arbitrary pose, illumination face into several target pose faces
Pos & Wu and Deng (2016) DNN Build a pose, illumination normalization NN with much less training data
Y € ———p Pathirage et al (2016) AE Learn dynamic data adaptive features used for pose, expression domains
expr‘eSS|on Lin and Fan (2011) DBN Deal with low resolution face recognition with pose variations by learning the
relationship between HR and LR manifolds
Pose & IOW Li 1 (2015 CNN Tree-structure Kernel Adaptive CNN to disentangle irrelevant non-rigid
r'ZSOIUﬂO n ik sl LHiDe) i appearance variations of viewpoint and expression changes

Yin and Liu (2017) CNN
Ding and Tao (2015) CNNs+SAE

Hu et al (2017b) DNN
Sun et al (2014a) CNN
Zhu et al (2014b) CNN

A multi-task CNN for pose, illumination, expression (PIE) estimations

Jointly learn face representation with pose, illumination, expression issues

Deal with pose and other variations by learning the displacement field

Extract deep identification-verification features with various face regions and
resolutions; Handle pose, illumination, expression, ages, occlusion challenges
Directly transform original images to canonial view handling multiple challenges
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= Pose and illumination

Single
I:l Wu and Deng (2016) Pose and Illumination
¢/ Build a pose and illumination normalization I_"““’“e"“‘“"" Normalized
neural network with much less training data - -
ose and
; : : T1lumination
¢/ The idea is that: st
o the output of normalization task should De§§t§§¥ial Output
be identity-preserving
o and contains sufficient information of
input identity to reconstruct the input . . . Trained
. Normalization
Image _ = Deep Neural
. . Input Network Output
Arbitrary Pose and
I1lumination Images

Fig. 1. Visual illustration of proposed method.

Wu Z, Deng W (2016) One-shot deep neural network for pose and illumination normalization face recognition. In: Multimedia and Expo, Intl.

Conf. on, IEEE, pp 1-6
39

¢/ Use an auxiliary reconstruction task that reconstructs the original input
image from the output of the normalization task,

v/ to improve the identity-preserving ability of the DNN

7 %7 Local 2 X 2Max Fully 5X5 Local 3X3Max  Fully Fully 5X5Llocal 3*3Max Fully
Connected Pooling Connected Connected Pooling C cted C cted C cted  Pooling Connected

‘3 . .
6 32 50
L 32
Normallzatlor' Task Reconstrultlon Tas@(

1GT

1
<

Input < RECDN I RECON Y;
Image CODE ccoe L

Fig. 5. Complete DNN architecture of our model.
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= Pose and facial expression

Wiz123 Wiz 3
[ Pathirage et al (2016): E =
v/ Deep Discriminant Analysis (DDA) Nets — (& ..
¢/ can learn dynamic data adaptive features : = — g 2
used for various problems such as face sngiin Jmb g > P ‘~;,!,_-=.<'
pose and expressions - — { AAA :
v/ consists of 3 interconnected learning L: = ‘A‘
i _ . _ _ | L2 L3 Discriminant
o the progressive non-linear dimension 7 5 | " Manifolds
reduction process: L4 | | L5 }
. L1, L2;hyield aﬁlow din&ensional j f P ) f
eature whose effective dimension is Vor d
Palf the dimension of the original RGB w 122 S 83Us
eatures

o Fig. 1. DDA Net where ¢ € R(36*3)_ f; € R75, f; € R50 denote the
o de-noising process combined patch feature and the low dimensional noisy feature learned at Layer

L3; based on a strong supervisory I (L1) and Layer 2 (L2) respectively while f3 € R? denotes the noise-less
signal which is the neutral frontal face  feature learned at Layer 3 (de-noising layer) in the observed low dimensional
o Discrimination process space. g3(.) represents the decoder function. Hence the discriminant layer

L5: based on a single representative where fy € Retass count—1 s shown as the right most layer.

face image thus ensures the features
observed in the reconstruction layer
are highly discriminative

Pathirage CSN, Li L, Liu W (2016) Discriminant auto encoders for face recognition
with expression and pose variations. In: Pattern Recognition, Intl. Conf. on, IEEE,

pp 3512-3517 41
¢/ In DDA, each shallow AE is
%rair)(eglto acr?ieve si_m%k? but il it BEs e
ractable goals required to
address the global non-linear O-0O-0 B-8-3 0O-8-0
objective as a whole A & 4
v’ The framework follows a A 5
ar’%ﬁh basf_ed e}: prola%h Ito B Sy
urther refine the globa S
non-linear objecti\ge into § R =] B |= TP LS
simpler tasks o Net Net Net k:
¢/ choose non-overlapping 3 .
patches of the face ﬁnage of = Ve
size and stride 6x6 & 4 4
respectively B-B-0 (m-m-E (B30
¢/ it limits the number of {ck} - 1%t patch {cN} - Nt patch

parameters of the model that

G.glerﬁr;[ 24 g g Clﬁ aDrBt A\\N It] g? in a Fig. 2. Patch based DDA Framework that converts each patch of a face image

. to its corresponding frontal face patch followed by the non-linear discriminant
para”e environment analysis process (DDA layer).
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= pose, illumination, expression (PIE)

[ Yin and Liu (2017)
¢/ A multi-task CNN for pose, illumination, -

expression (PIE) estimations / — —’clalss?gclai’ion

PIE-invariant
identity features

- N g —s pose
PIE 'varlant entangled classificatiog
training data features

weights in  disentangled
FC layer features

Fig. 1. We propose MTL for face recognition with identity classification as
the main task and PIE classifications as the side tasks (only pose is illustrated
in this figure for simplicity). A CNN framework learns entangled features from
the data. The weight matrix in the fully connected layer of the main task is
learnt to have close-to-zero values for PIE features in order to exclude PIE
variations, which results in PIE-invariant identity features for face recognition.

Yin X, Liu X (2017) Multi-task convolutional neural network for pose-invariant face recognition. IEEE trans on Image

Processing
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= multiple challenges

[ Ding and Tao (2015)

¢/ can jointly learn face representation with pose, illumination, expression issues by CNNs+SAE
framework

[0 DeeplD2 (Sun et al, 2014a)

¢/ can extract deep identification-verification features of images with various face regions and
resolutions

¢/ to deal with challenges including pose, illumination, expression, ages, occlusions

0 Zhu et al (2014b)

v proposed a deep learning framework
¢/ can transform original images to a canonical view, which can also deal with other challenges
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0 Huetal (2017b)

v/ proposed an end-to-end deep neural network

v/ used to transform a non-frontal face image into a frontal view by learning the

displacement field,

v/ which reflects the shifting relationship of pixels from the non-frontal face image and

the transformed frontal view

Displacement Field Network

Translation
Layer

M- --o-1
| |

Fig. 2. Schema of our method, LDF-Net. LDF-Net is an end-to-end method
to learn the transformation from a non-frontal face image to a frontal one,
composing of a displacement field network F and a translation layer T.

Video Face Recognition (VFR)

® \/FR has emerged as an important topic
[ Due to the increasing number of CCTV cameras installed
[ and the easy availability of video recordings

Hu L, Kan M, Shan S, Song X, Chen X (2017b)
Ldf-net: Learning a displacement field network
for face recognition across pose. In: Automatic
Face & Gesture Recognition, Intl. Conf. on, IEEE,
pp 9-16
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® VVFR aims to recognize whether a face video belongs to a certain subject

® A few algorithms have been developed to utilize varying approaches,
ranging from frame by frame matching to advanced deep learning

architectures

® The key issue is to build an appropriate visual representation of the video
faces, such that it can effectively integrate the information across different

frames together

46



Table 14 Overview of deep learning methods for video based face recognition

Algorithm Model Description
Zou et al (2012) CNN ;\r} unsupervised loa.rmflg a{lgor_uh.m for learning invariant features from video
using the temporal slowness principle
Hu et al (2014) DNN Present a new discriminative deep metric learning (DDML) method
Taigman et al (2014) CNN Use 3D face modeling to apply piecewise affine tranformation to get features
Sun et al (2015b) CNN Combine verification+identification loss to get discriminative feature
5 B i, An end-to-end system; Map face to a compact Euclidean space where
. " o) A
Image & Schroff et al (2015) CNN distances directly correspond to a measure of face similarity
Video Wu et al (2015) CNN Light CNN with reduced parameters & time to learn 256-D embedding
Parkhi et al (2015) CNN Combine the very deep convolution neural network
He et al (2015b) CNN \ predictable hgsh code algorithm to map face samples in the original feature
space to Hamming space
Addr‘eSS pose, — Ding and Tao (2017) CNN A comprehensive framework to overcome challenges (blur, pose, oeclusion)
bIUr' ) ) ) Wang et al (2017b) CNN ;\' framowork .\Vlth ln[_)lc‘t'l(:;ss to identify few suspects from the crowd in real
Real_.l.lme Vldeo v time for public video sun_mllau.co
” Wang et al (2017e) DNN A method for face recognition in real-world surveillance videos
survelliance Grundstrém (2015) CNN l-oT:us on real-time VF I? using two feature types: .local feature representations
around landmark points and deep representations extracted from CNN
—  Yang et al (2016) CNN Built an attention based model to aggregate features of video frames
Rao et al (2017b) CNN \ n attention-aware deep reinforcement learning framework to seek the focuses
of attention in video
Goswami et al (2014) SDAE+DBM  Automatic memorability based frame selection algorithm for feature extraction
Goswami et al (2017) SDAE+DBM  Get feature-rich frames by discrete wavelet transform& entropy computation
. Rao et al (2017a) GAN-like lntogrmo mf.ormall()n fr'om v;dm fr:upcs effectively and efficiently by combining
—v'd-e—< metric learning and adversarial learning
Dong et al (2016) CNN An input ag;.;'rogawd network to learn fixed-length representations for variable
o length face videos
Parchami et al (2017a) CNN Extract discriminative embedding of still ROl and compared with ROIs of video
Sohn et al (2017) CNN Feature-level domain adaptation approach to learn domain-invariant features
Sharma et al (2016) DBN Use Generalized mean Deep Learning Neural Network
L_ Huet al (2017c) CNN Measure the statistical characteristics of image sets for VFR
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= Perform both image and video based FR

[0 DDML (Hu et al, 2014)

Hu J, Lu J, Tan YP (2014) Discriminative deep metric learning for face verification in the wild. In: Proceedings of the
IEEE Conf. on Computer Vision and Pattern Recognition, pp 1875-1882
[ DeepFace (Taigman et al,2014)

Taigman Y, Yang M, Ranzato M, Wolf L (2014) Closing the gap to human-level performance in face verification.
deepface. In: IEEE C ter Vision and Pattern Recognition
0 DeeplD3% (Sun et al, 2015b) 9

Sun Y, Wang X, Tang X (2015b) Deeply learned face representations are sparse, selective, and robust. In:

[] Fa @éﬂ?&??@%‘?&‘ﬂe&{fﬁﬁ E@mfﬁn Computer Vision and Pattern Recognition, pp 2892—2900

Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and clustering. In:
0 Ligﬁf((gegqmngam the éﬂ,Eg@pgf} on Computer Vision and Pattern Recognition, pp 815-823

X, He R Sun Z, Tan T A light cnn for deep face representation with noisy labels. arXiv preprint
0 VGE#,'% (%fg&l cPaIT K91 P P : AE

7451

[ He Iﬁrmi%f]\éﬁg?lc&ﬁ)_ﬁsserman A, et al (2015) Deep face recognition. In: BMVC, vol 1, p 6

He R, Cai Y, Tan T, Davis L (2015b) Learning predictable binary codes for face indexing. Pattern Recognition 48(10):3160-3168
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= Specially targeted on VFR

® The works mentioned above usually use face images as input

® To take full advantage of the useful information contained in videos, some
methods learn face video representations directly

® Generally speaking, existing algorithms:
¢/ either select a small number of frames from all of the available frames
¢/ or use all frames to extract information-rich features
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[l Dong et al (2016) v/ To represent a face video, three steps are

Dong 7, Jia S, Zhang C, Pei M (2016) Input aggregated req uired .
network for face video representation. arXiv preprint )
arXiv:160306655 o represent each face frame

n

Covariance
Matri)

1
Classifier

epresentati

R

{

UEEUU » o model the.video clip |
: o map the video representation for the
-_’ BNLL specific task

: : v/ Corresponding to the three steps, the input

- aggregated network contains three units:
J o frame representation unit

@) O aggregation unit
........... L Ly o o) mapp|ng unit
B CNN:]

it

\ 4

| Figure I: The illustrations of the traditional face video recog-
nition method and our method. The traditional method (a)
has three uncorrelated steps: extracting frame features, mod-
eling face video clip, and learning classifier. Only the clas-
sifier learning procedure treats the final recognition task as
optimal principle. Differently, the input aggregated network
s ‘Eﬁ"] : (b) integrates frame representation unit, aggregation unit, and

"l — mapping unit into an end-to-end system to learn the mapping

& RRRTSCsadAevLeri e aoneet from face videos to representations, and all the units serve for 50

(b) the final task.

n

CNN:]

\ 4

Aggregation Unit

fully
connected

|

outer product l

Mapping Unit

Represent

group average
pooling

\ 4

Frame Representation Un




v/ The aggregation unit aims at modeling
the variable-length frame
representations as fixed-length
Riemannian manifold points

¢/ The architecture contains four layers:
O Minus mean layer
o fully connected layer
O outer product layer
O group average pooling layer

0 NAN (Yang et al, 2016)

¢/ Neural Aggregation Network

v/ feature embedding module

o A CNN which maps each face frame into a
feature representation

v’ neural aggregation module

o composed of two content based attention blocks
which is driven by a memory storing all the
features extracted from the face video through
the feature embedding module

o The output of the first attention block adapts the
second, whose output is adopted as the
aggregated representation of the video faces

o Due to the attention mechanism, this
representation is invariant to the order of the
face frames.

Minus Mean % E o E/j

H—X =% X, —x

Transpose Fully
Connected

Outer Product ¢ / ...........
| 4

..............

Group Average
Pooling

G

Figure 2: The architecture of the aggregation unit. The aggre-
gation unit contains four layers: minus mean layer, transpose
fully connected layer, outer product layer, and group average
pooling layer.
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| Aggregation module i
H 1

]
i qo © q1 ¢ !
1 —»| Attention Attention :
1
1
1

{f}

CNN

Figure 1. The face recognition framework of our method. All
input faces {x} are processed by a feature embedding module
with a CNN, yielding a set of feature representations, {fi. }. These
features are passed to the aggregation module, producing a 128-
dimensional representation r' for the input video faces. This com-
pact representation can then be used for the decision.

Yang J, Ren P, Chen D, Wen F, Li H, Hua G (2016) Neural aggregation network for video face recognition. arXiv preprint

arXiv:160305474

52



o Aggregation Module

v/ designed to take benefits from all frames in a video, potentially containing more
discriminative information than a single image

¢/ and handle arbitrary video size in an unified form, producing an order invariant
representation

Figure 2. The attention block. It receives a set of feature vectors ke
and filters each of them independently by a kernel q, yielding a

set of scalars {e;. }. There scalars are then passed to a softmax op-

erator, producing a set of weights {ax}. Finally, the input feature

vectors are fused via Eq.[I]
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[ Rao et al (2017a) —See GAN |
| ] IAt’(ention I | i T IAttention ] I A
D ADRL (Rao et al’ 201 7b) —‘[ ;rame Evaluation Network ]'— re‘?;g:f‘?’:gent
v/ attention-aware deep reinforcement learning i —— S .|
method [ Local Temporal Pooling| [ Local Temporal Pooling | R—
' T = T T I I representation

I learning

¢/ aims to discard the misleading and
confounding frames

Local Recurrent

I

Local Recurrent ]

recognition

| I
I 1 I | !
v/ find the focuses of attentions in face videos for @ @ % @ @ % rep?f:etr'ﬁlﬁon
earning
1 f

I

I !

Image space

Figure 1. Flow-chart of our proposed method for video face recog-
nition. Our approach takes a pair of face videos as the input and
produces the temporal-spatial representations for each frame by
using multiple stacked modules, including a convolutional neural
network (CNN), a recurrent layer and a pooling layer with local-

Rao Y, Lu J, Zhou J (2017b) Attention-aware deep reinforcement learning ity constraints, respectively. Then, a hard attention model with
for video face recognition. In: Proceedings of IEEE Conf. on Computer a frame evaluation network is trained by the proposed deep rein-
Vision and Pattern Recognition, pp 3931-3940 forcement learning method, which finds the attentions of the video

pair for face verification. 54



v/ formulate the process of finding the attentions of videos as a Markov

decision process

¢/ Train the attention model through a deep reinforcement learning framework

without using extra labels

*

' :

state t\\ : ﬂate tu\\ :

}_. action t L action t+1
O

droo W

state t+2

state T

R—
—{end
v

5 5
O 01

O
O

end

end |

Figure 2. Markov decision process (MDP) of finding the focuses of attentions. States represent remaining frames after ¢ steps, actions
represent the decisions of dropping frames. Action a; may lead to two states: state s;+1 and termination. Reward signal (R) is decided by
the face recognition network C'; depending on states and actions. States, actions, reward signals and terminations in MDP are illustrated

by circles, rectangles, rhombuses and rounded rectangles, respectively.

v/ Unlike existing attention models, it takes information from both the

image space and the feature space as the input to make better use of

face information that is discarded in the feature learning process

v/ It is attention-aware, which seeks different attentions of videos for the

recognition of different pairs of videos
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[ Goswami et al (2017)

v/ select feature-rich frames from a video sequence using discrete wavelet transform and entropy

computation

v/ followed by representation learning-based feature extraction:

o deep learning architecture
o a combination of stacked denoising sparse autoencoder (SDAE) and deep Boltzmann machine

(DBM)

o formulation for joint representation in an autoencoder;
o update the loss function of DBM by including sparse and low rank regularization

¢/ a multilayer neural network is used as the classifier to obtain the verification decision

Goswami G, Vatsa M,
Singh R (2017) Face

Video 1

Frame Selection Unsupervised Selected. Frames
using DWT Joint Feature for Classification
Entropy Learning

Feature-rich Frames

Neural Network Decision:
—
Classifier Same/Not Same

verification via learned } .
ntation on Frame Selection Unsupervised
represe . . using DWT Joint Feature
feature-rich video frames. Entropy Learning Selected Frames
trans on Information for Classification
Forensics and Security Video 2 Feature-rich Frames
12(7):1686-1698 57
Fig. 3. Tllustrating the steps involved in the proposed face recognition algorithm.

v/ representation learning-based feature extraction

Input Layer 1 Layer 2 Joint 3-Layer DBM
Image Encoding Encoding Representation Input Output
r M N M N M N M N MN
MxN TXT ‘—1‘—)(7‘- 2X(’TXT) 2X(TXT) -

Fig. 5. Proposed deep learning architecture for facial representation: from
input layer (image), two hidden layer representations are computed using
SDAE encoding function. A joint representation is then obtained which
combines the information from two SDAE encoding layers. Using joint
representation as input, a DBM is used for computing a final feature vector.

Fig. 6. Joint learning framework: features learned from the first and second
levels of autoencoder, i.e., f; and f5 are given as input to DBM to learn the
joint representation J\.
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® Face recognition in videos presents unique challenges due to the variations
which can degrade the frame quality

[0 TBE-CNN (Ding and Tao, 2017)
¢/ Trunk-Branch Ensemble CNN
¢/ A comprehensive framework based on CNN
¢/ To address some challenges e.g., pose, occlusion and blur in VFR
¢/ Trunk network implementation is based on GoogLeNet

v/ Divide the GoogLeNet layers into three levels:
o the low-level layers
o middle-level layers
o high-level layers
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v’ The three layer levels successively extract features from the low- to the high-level

v’ Since low- and middle-level features represent local information, the trunk network and
branch networks can share low- and middle-level layers

v’ In comparison, high-level features represent abstract and global information
v’ therefore, different models should have independent high-level layers

Concatenation Inceptiond
(6X6X672) (6X6X832)

Ding C, Tao D (2017) Trunk-branch
ensemble convolutional neural
networks for video-based face
recognition. IEEE trans on Pattern
Analysis and Machine Intelligence

Max Pooling +
Patch Crop

Conv2 Inception3

Final Face

Convl Concatenation Representation
(96X96X64) Max Pooling + ’ (3X3X2688) (512-dim)
2 Patch Crop N
Input image =
(192x192x3)

Concatenation Inceptiond

Fig. 3. Model architecture for Trunk-Branch Ensemble CNN (TBE-CNN). Note that a max pooling layer is omitted
for simplicity following each convolution module, e.g., Conv1 and Inception 3. TBE-CNN is composed of one trunk
network that learns representations for holistic face images and two branch networks that learn representations for
image patches cropped around facial components. The trunk network and the branch networks share the same low-
and middle-level layers, and they have individual high-level layers. The output feature maps of the trunk network and
branch networks are fused by concatenation. The output of the last fully connected layer is utilized asége final face
representation of one video frame.



Parchami M, Bashbaghi S, Granger E (2017a) Video-based face

0 HaarNet (Parchami et al, 2017a) recognition using ensemble of haar-like deep convolutional neural
v Inspired by Ding and Tao (201 7) networks. In: Neural Networks, Intl. Joint Conf. on, IEEE, pp
4625-4632

v/ anovel end-to-end ensemble of DCNNs

v/ to extract discriminative embedding of still regions of interest (ROI) and then compare it with
regions of interests (ROIs) in video

Trunk i\
\ \§ 576
\ 256 .
e T 0 = W\ »
Conv 1 Conv 2 Inception 3 Inception 4 \\ Tnception 5 \, Fully comecied \\
X
f \\
/ \ \X
Input Image e ( ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ s b e s o8, l
192X192¢3
( ) ‘ (\\ '
l ( \ = \\\ I 128
Branch 1 Inception a, a* Tneeption d, d, Subtraction 1 Fully connected \X T
\
' 1
AS
\\
Mk 3 Q Inception b, b Inception e, &* Subtraction 2 Fully i \\\ : 128
3 I
|
- » 1
I

uoneuasasday 2t

" Branch3

Fig. 2: HaarNet architecture for the trunk and three branches. (Max pooling layers after each inception and convolution layer
are not shown for clarity). 61

¢/ HaarNet uses a triplet-loss concept

¢/ Abatch of triplets composed of <anchor, positive, negative> is input to the
architecture

v/ The output of the HaarNet is then L2 normalized prior to feed into the
triplet-loss function in order to represent faces on a unit hyper-sphere

Batch of triplets

N
\

|
',Sin le

’

f

1 = = .

- N i triplet

\ ’
s

\\ ’
% X 4
~ . ’ ’
o, e

Fig. 3: Processing of triplets to compute the loss function. The
network inputs a batch of triplets to the HaarNet architecture
followed by an L2 Normalization.
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0 Sohn etal (2017)

v/ an image to video feature-level
domain adaptation approach to learn
some domain-invariant discriminative
representations for VFR

v/ uses a pre-trained face recognition
engine on labeled still images to
extract discriminative information

v/ adapts them to video domain by
synthetic data augmentation

v/ and then learns a domain-invariant
feature through a domain adversarial
discriminator

(Sec3.1)

source: l;bel;d image

( Feature
' restoration loss
| (sec32) )

| ( )
sz Ba B
7 >

- | classification loss ‘
domain bridge: synth )
( Domain

(sec32)
F ~ 9
L& 6 his h6 > VDNet ——> adversarial loss
I L (Sec3.3) )
f'a ie - ' )
\

target: unlabeled video

ized image

Figure 1. We propose an unsupervised domain adaptation method
for video face recognition using large-scale unlabeled videos and
labeled still images. To help bridge the gap between two domains,
we introduce a new domain of synthesized images by applying a
set of image transformations specific to videos such as motion blur
to labeled images that simulates a video frame from still image. We

utilize images, synthesized images, and unlabeled videos for do-
main adversarial training. Finally, we train a video domain-adapted
network (VDNet) with domain adversarial loss (Section 3.3) as
well as by distilling knowledge from pretrained reference network
(RFNet) through feature matching (Section 3.1), feature restoration
and image classification (Section 3.2) losses. 63

Sohn K, Liu S, Zhong G, Yu X, Yang MH, Chandraker M (2017) Unsupervised
domain adaptation for face recognition in unlabeled videos. arXiv preprint
arXiv:170802191

VDNet

HE j IHH\D(VHM

high quality > |ow quality

RFNet

Figure 2. An illustration of network architecture for RFNet, VDNet and discriminator (D). The red and gray blocks denote the trainable
and fixed modules, respectively. VDNet not only shares the network architecture with RFNet, but also is initialized with the same network
parameters. Once trained, D can sort the frames in a video sequence by indicating whether a frame is similar to images compatible to a face
recognition engine and rejects those frames that are extremely ill-suited for face recognition.
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0 ASML (Hu et al, 2017c)

¢/ an Attention-Set based Metric Learning method
¢/ to measure the statistical characteristics of image sets for VFR

65

= Handle real-world or real-time video surveillance

[0 Wang et al (2017b)

¢/ built a DCNN framework with a triplet supervisory signal
v/ to identify few suspects from the crowd in real time for public video surveillance

ot elect tCNN < a Vaz 2 18
riplet s on -7 » -
pdite back
N propagation scror. &
gradient Bl
triplet loss

Fig. 2. End to end deep embedding training with triplet loss

Wang G, SunY, Geng K, Li S, Chen W (2017b) Deep embedding for face recognition in public video surveillance. In: Chinese gg
Conf. on Biometric Recognition, Springer, pp 31-39



® Quality challenges, it is still not solved yet

[ f\s videos usually contain many frames, it brings considerable computational burdens
00
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3D Face Recognition

® Most deep learning methods are mainly for 2D face recognition

® \With the advances of 3D sensors, e.g. the Kinect, and point cloud library
(PCL)

[ the information of geometric coordinates of real-world objects can be easily collected

[ more three-dimensional volume data can be processed to mitigate the problem associated
with 2D images

XBOX 360

pointcloudlibrary
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4

® The RGB-D cameras usually provide synchronized images of both color
and depth
0 The color image characterizes the appearance and texture information of a face
0 The depth image provides the distance of each pixel from the camera, representing the face
geometry to a certain degree

e 3D information represents more discriminative features by the virtue of
increased dimensionality
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® In recent years, some researches have focused on face recognition using
3D facial surface and shape

Table 15 Overview of deep learning methods for 3D face recognition

Algorithm Model Description

An efficient hybrid fuzzy neural network (FNN) using the depth map to extract
features and to handle varying lighting effects
Verify and identify a subject from the colour and depth face images; Show higher

Thakare and Thakare (2011) FNN

Lee et al (2016) CNN s By g il ! g e
accuracy under harsh illumination environment or large head pose variation

Kim et al (2017) CNN Only rq?mre standarq preprocessing methods; Does not involve complex feature
extraction and matching

Jhuang et al (2016) DBN L SO, point cloud library to estimate features, then adopt these features to train
DBN model

S — - 3.1M 3D facial scans of 100K identities; Outperf t tate-of-t 1

Gilani and Mian (2017) CNN Trained on | acial scans of K identities; Outperform the state-of-the-ar

3D and 2D FR algorithms

(
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0 Lee et al (2016)

v/ Face recognition from RGB-D images utilizes 2 complementary types of image data to achieve more accurate recognition

v/ 3parts: (1) depth image recovery; (2) deep learning for feature extraction;

(3) joint classification

08

£ »
To alleviate the problem of the limited je trme St e pivlenion s ":“""“-‘
size of available RGB-D data for deep s CNN model | | BB CNN model
. i . f I for depth
learning o | o | o [ S0 | il e
Detection ; 7 : :
v firstly trained with color face el Feare Extaction (adton) | |Fsture Exacton Vldation
dataset > »
v/ later fine-tuned on depth face e
. . Deep R i Deep R {
images for transfer learning i of fel ool o
Head Pose £ 4
Lee YC, Chen J, Tseng CW, Lai SH (2016) Accurate and robust | 2afrom Galery | e | i Gasscaton
) i g s (Database) " (Verification)

face recognition from rgb-d images with a deep learning
approach. In: BMVC

[0 FR3DNet (Gilani and Mian, 2017)

Figure 1: A flowchart of our proposed system. Red region on depth maps means where
depth information is lost.

v/ A deep CNN model that is suited to 3D data
¢/ Trained on 3.1Million 3D facial scans of 100K identities
¢/ The skeleton architecture follows VGGFace but with a change in the conv layers

160 x 160 x3

Deep 3D Face Recognition Network (FR3Dnet)

Figure 5. Architecture of our proposed FR3DNet. Every convolu-
tional layer is followed by a rectifier layer.

Gilani SZ, Mian A (2017) Learning from millions of 3d scans for large-scale 3d face recognition. arXiv preprint

arXiv:171105942
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0 Kim et al (2017)

v/ 3D face recognition algorithm using a DCNN and a 3D augmentation technique

v/ transfer learning from a CNN i’i,’.;;lgi’,{:"’,,’,’:,’\g"’,;;,;,,;1;;;(3;1;;,13;;,;‘;,;,;,;&;s;{.{g"”

. . i Resized input Finetuning VGG Face 3
trained on 2D face images can e |
effectively work for 3D face P\ ‘ 7( S

.. . . ; Input  Random patches —» ' | (s
recognition by fine-tuning the ; | W |
CNN with a relatively small : S pbas s nput dpth maps e Bk
number of 3D facial scans | Posc variation Generated. 1 ;
] prrgsslon ! !
VPropose a 3D face SRR =22 IS =
. . . ; T'esting |IIILI\L‘ Prepr(‘)c:»'mg ) 4 - :
augmentation technique which &resizedinput  CNNFeature extraction ‘
synthesizes a number of ) ‘ o — — |
d'ff f H | H f = == [ ™ nommalization || transform | | Matching ||
ITferent tacia expressions rrom M UH !
a single 3D face scan | mpet  Bpdepthme 0 (Galle
| 3Dpointcloud  3x224xx224 featitres
Figure 2: An overview of the proposed face identification system. In the training phase, we align 3D facial point clouds with
Kim D, Hernandez M, Choi J, Medioni G a reference model, augment the point clouds, and convert them to 2D depth maps. Depth maps are resized to fit the size of
(2017) Deep 3d face identification. arXiv VGG Face. In the testing phase, a probe scan is preprocessed and resized. Then, a face representation is extracted from the
preprint arXiv:170310714 fine-tuned CNN. After normalization of features and Principal Component Analysis transform, one’s identity is determined
by the matching step. 73

e Although 3D face recognition has advantages over its 2D counterpart, it
has not yet been fully benefited from the recent developments in deep
learning, due to:

0 the unavailability of large training sets
0 as well as large test datasets

® Besides, the high cost of specialized 3D sensors limits their use for
practical applications
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