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AE: Autoencoder

e A feedforward, non-recurrent neural network
e Similar to the multilayer perceptron (MLP)

® Contains an input layer, an output layer, one or more
hidden layers
® Hidden layers:

[ Reconstruct their own inputs, which forces hidden layers to try to
learn good representations of the inputs

[ Instead of predicting the target value Y, given inputs X

® Encoder

Iniu: ?fm 0 maps the input x onto z which is usually referred
LIS g to as code, latent variable, or latent representation
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Figure from:
https://towardsdatascience.com/applied-deep-learning-part-3-autoe
ncoders-1c083af4d798



Variations of AE

® DAE: Denoising Autoencoder
[0 Enhances its generalization by training with locally corrupted inputs

0 Does two things:
v/ encode the input
v/ undo the effect of a corruption process

® SAE: Stacked Autoencoder

[ Stacked to form a deep network by feeding the latent representation of an autoencoder as
input to the next autoencoder

® CAE: Contractive autoencoder

® VAE: Variational autoencoder
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® AE is one of the commonly used building blocks in deep neural networks
® A number of deep methods based on it have been proposed recently
Table 4 Overview of deep methods based on AE and its variants
Algorithm Description /Remark
CpAEs (Riggan et al, 2015) Coupled autoencoder for learning a target-to-source image representation for HFR
Shao et al (2015) A fra:mve)rk m.tegra.tm-g multlplg deep AEs with bagging strategy to deal with
classification with missing modality problem
Liu et al (2016a) 7-layer deep neural network; First 6 layers can be seen as an autoencoder network
DDA (Pathirage et al, 2016) Deep autoencoder for pose, expression
CAN (Xu et al, 2017a) Coupled AE networks to handle age-invariant FR and retrieval problem
ADSNT (Huang et al, 2016) Supervised autoencoder
SPAE (Kan et al, 2014) Stacked progressive autoencoder; Learn pose-robust features
SFDAE (Pathirage et al, 2015) Stacked face DAEs; A multiple-encoder single-decoder color fusion model
Gao et al (2015) Stack the supervised autoencoders (SSAE) to form deep architecture to extract features
Zhu et al (2013) Encoder: a 3-layer CNN; Decoder: reconstruction layer

RF-SME (Zhang et al, 2013) Encoder: a single-hidden-layer neural network (S-NN)




Riggan BS, Reale C,
Nasrabadi NM (2015)
Coupled auto-associative
neural networks for
heterogeneous face
recognition. IEEE Access
3:1620-1632

0 CpAEs (Riggan et al, 2015): ---see HFR
v/ Acoupled AEs for learning a target-to-source image representation
v/ Across-modal transformation is learned by:

o forcing the hidden units (latent features) of two neural networks to be as similar as possible
o while simultaneously preserving information from the input.
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FIGURE 5. A CpAE is a pair of AEs where the hidden units (latent Source (z) Target (y)

features) are coupled. The latent features, zx and z, are computed from

the source and domain inputs, X and y, and the encoder parameters: FIGURE 6. A stacked CpAE is a pair of stacked AE’ with one (or “"°'°)

Wy, by and Wy, by. Additionally, source and domain reconstructions, coupled layers of hidden units. As shown, a quent CpAE is trained
X and y, are computed using the latent features and decoder using the hidden units from the previous CpAE. For convenience, we have 7
parameters: W}, b} and W}, bj,. dropped the decoders.

0 Shao et al (2015)

Shao M, Ding Z, Fu Y (2015) Sparse low-rank fusion based
deep features for missing modality face recognition. In:
Automatic Face and Gesture Recognition, Intl. Conf. and
Workshops on, IEEE, vol 1, pp 1-6

v integrated multiple deep AEs

v’ each AE generates input by randomly sampling data
from another modality and the auxiliary database

_____ i 1 ¢ and enforces the output to lie in a common feature
l \,'f.--_.<:i> ! space through Robust PCA.
£ | W Al v Finally, a sparse, low-rank feature fusion approach is
1 ; E (\:‘_';;@%9- proposed in the test phase to integrate multiple features
I ] H4 - «° 1, +1 learned from different AEs, followed by a decision voting
-% g /' %; s \‘. Fig. 1: Framework of the proposed method, which contains
= T | - ~-,:..'.':®%¢>- two modalities: “Modality-A™ as VIS, “Modality-B” as NIR.
@’ . x® ol i It uses two databases: an auxiliary database with complete
. multi-modal data, a test/target database with missing modal-
- = v v e ity. We first use the bagging strategy to sample data from
—— e = e = omm o= == == == == == == DOth auxiliary and test databases, where a color (on the up-
E left corner of each face) represents a sampling. Then these
%" (v e (70 sampled data can train m autoencoders AF;.,, and yield
© » X LowRank |2 m decisions which will be fused by a voting scheme. Note
P 2 Fusio 2 X, and L; represent a sampled dataset, and its low-rank
8o .’%/X’n ﬂ Z ) recovery, respectively in the training phase. X; and Z; are
T deep features, and the new representation of X; after sparse 8
2 low-rank feature fusion in the test phase, respectively.



O Liuetal (2016a)

---see facial expression

v/ Afusion based face recognition method

v/ using AE to reduce the dimension of fusion features
v/ Use softmax regression to get identification decision

Original image
sequence

Face detection

ol

Align

Preprocessing

[0 DDA (Pathirage et al, 2016)

v/ Deep Discriminant Analysis Nets

v/ can learn dynamic data adaptive
features used for various
problems such as face pose and

MHI
The first image in
sequence
Y v
Extract features == Fusion features —

expressions

v’ consists of 3 interconnected

learning processes:

O the progressive non-linear dimension
reduction process:

L1, L
whose e

Liu J, Fang C,Wu C (2016a) A fusion
face recognition approach based on
7-layer deep learning neural
network. Journal of Electrical and
Computer Engineering 2016
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FIGURE 3: Structure of our network.

yield a low dimensional feature
ective dimension is_half the

dimension of the original RGB features
O de-noising process

~L3; based on a strong supervisory
signal which is the neutral frontal face

o Discrimination process

L5; based on a single representative
face image thus ensures the features

observed in the reconstruction layer are

highly discriminative
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---see pose&expression
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Fig. 1. DDA Net where CZ?T e R(6*3) £, € R75, fo € R5C denote the
combined patch feature and the low dimensional noisy feature learned at Layer
1 (L1) and Layer 2 (L2) respectively while f3 € R? denotes the noise-less
feature learned at Layer 3 (de-noising layer) in the observed low dimensional
space. g3(.) re})resents the decoder function. Hence the discriminant layer

where fg € R¢

ass count—1 g shown as the right most layer.

Pathirage CSN, Li L, Liu W (2016) Discriminant auto encoders for facg,
recognition with expression and pose variations. In: Pattern Recognition, Intl.



v/ In DDA, each shallow AE is
trained to achieve simple but
tractable goals required to
address the global non-linear
objective as a whole

v/ The framework follows a
atch based approach to
urther refine the global

non-linear objective into
simpler tasks

v’/ choose non-overlapping
patches of the face image of
size and stride 6x6
respectively

v/ it limits the number of
parameters of the model that
need to be learnt while
training each DDA Net in a
parallel environment

0 CAN (Xu et al, 2017a)

¢/ Coupled Autoencoder Networks
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Fig. 2. Patch based DDA Framework that converts each patch of a face image
to its corresponding frontal face patch followed by the non-linear discriminant
analysis process (DDA layer).

v/ used AE to handle the cross-age face recognition and retrieval problem

X1
©
B

ww W

00000
Xy A

A
wul wvl

bridge

-

06006
CI

X2
90000

LWV.:?

A
wu2

A

3
WHZ

1

Fig. 2. The overview of CAN. CAN is composed of two identical auto-encoders and a bridge network. Given a pair of input images (x1. x2) of one person, first we leverage auto-encoders
to reconstruct inputs to project them into a high-dimensional feature space in hidden layers. Second, we add constraints in the above feature space to decompose it into three
components where (I;. I) as identity features can be used as age-invariant representations for recognition and retrieval. Note here different id can refer to the same person.

Xu C, Liu Q, Ye M (2017a) Age invariant face recognition and retrieval by coupled auto-encoder networks. Neurocomputing
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Besides, some AE based methods are designed in a
supervised manner

[0 ADSNT (Huang et al, 2016)
¢/ an Adaptive Deep Supervised Network Template with a supervised AE
¢/ trained to extract characteristic features from corrupted/clean facial images
¢/ and reconstruct the corresponding similar facial images.

ADSNT
Gallér N Preprocess,
imagez for example, | Train — Output: label I of the test image
I B Trainting histogram I = arg min H.\"” & xgll Ygel,2,..., c
& Probe equalization 9
images 2
Face m < Oapsnt
xsics Huang R, Liu C, Li G, Zhou J
Preprocess, (2016) Adaptive deep supervised
for example, Map autoencoder based image
—| Test image histogram reconstruction for face recognition.
equalization Mathematical Problems in
. . A . Engineering 2016
FIGURE 2: Flowchart of the proposed ADSNT image reconstruction for face recognition.
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comprised of clean/“corrupted” datum, one i i
hidden layer, and one reconstruction layer (b)
by using the “corrupted datum”; (b) stacked supervised autoencoder (SSAE);

v/ A deep supervised autoencoder (DSAE) .

v/ Consists of two parts: Cormupedface . e fae
O an encoder (EC) () architecture of the ADSNT
O a decoder (DC)

¢/ Each of them has three hidden layers

¢/ share the third layer, the central hidden layer

v/ The features learned from the hidden layer and the
reconstructed clean face are obtained by using the

“corrupted” data 1
4



Some variations of the AE are also adopted in FR
[ SPAE (Kan et al, 2014)

v/ proposed a stacked progressive autoencoder to learn pose-robust features

¢/ by modeling a complex non-linear transform from non-frontal face images to frontal ones in a
progressive way

¢/ SPAE contains multiple progressive AEs, and each maps face at large poses to a virtual view at
smaller pose angles

¢/ The output contains very small pose variations

Kan M, Shan S, Chang H, Chen X
(2014) Stacked progressive

(@ autoencoders
Figure 4. The output from each decoder in the SPAE network for the (spae) for face recognition across
input images in the bottom row. (a) output of exemplar training images poses. In: Proceedings of the IEEE

? e : Conf. on Computer Vision at&l
from MultiPIE. (b) output of exemplar testing images from MultiPIE. Pattern Recognition, pp 1883-1890
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Figure 1. The schema of the proposed Stacked Progressive Auto-Encoders (SPAE) network for pose-robust face recognition. We illustrate an exemplar
architecture of the stacked network with L = 3 hidden layers, which can deal with poses in yaw rotation within [-45°, +45°]. In training stage of our SPAE,
each progressive auto-encoder aims at converting the face images at large poses to a virtual view at a smaller pose (i.e., closer to frontal), and meanwhile
keeping the face images with smaller poses unchanged. For instance, for the first progressive AE demonstrated in this figure, only images with yaw rotation
larger than 30° are converted to 30°, while other face images with yaw rotation smaller than 30° are mapped to themselves. Such a progressive mode
endows each progressive AE a limited goal matching its capacity. In the testing stage, given an image, it is fed into the SPAE network, and the outputs of
the topmost hidden layers with very small pose variations are used as the pose-robust features for face recognition.
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0 SFDAE (Pathirage et al, 2015)

v Inspired by SPAE

v’ stacked face denoising
autoencoders

v Pro osed for expression-robust
eature acquisition

v’ exploits contributions of different
color components in different local
face regions by recovering neutral

SFDAE Model

expression from various ones el ) A ; g:(f(cl)

v’ and denoises the face with
dynamlc expressions in a Fig. 4. The proposed SFDAE model where fi € R5° denotes low
progressive way dimensional noisy feature learnt at layer 1, while fo € R5C denotes the

noiseless feature learnt at layer 2 in the observed low dimensional space. We
halves the image space by 50% to constraint the model to learn an effective
low dimensional feature.

--- See expression

Pathirage CSN, Li L, Liu W, Zhang M (2015) Stacked face
de-noising auto encoders for expression-robust face,
recognition. In: Digital Image Computing: Techniques and

Gao S, Zhang Y, Jia K, Lu J, Zhang Y (2015) Single sample face recognition
|:| Gao et a| (201 5) via learning deep supervised autoencoders. trans on Information Forensics and

Security 10(10):2108-2118
v’ Motivated by Denoising AE

v/ a supervised autoencoder to learn a robust image representation for the single training
sample per person (SSPP) problem

v’ It enforces faces with variations mapped to the canonical face
v’ and enforces features of the same person to be similar
v and then it stacks the supervised autoencoders to form a deep architecture to extract

features
_-similar
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Fig. 2. Architecture of Staked Supervised Auto-Encoders. The left figure: The basic supervised auto-encoder, which is comprised of the clean/“corrupted™
faces, there features (hidden layer), as well as the reconstructed clean face by using the “corrupted face™. The middle figure: The output of previous hidden
layer is used as the input to train the next supervised auto-encoder. We repeat such training several times until the desired number of hidden layers is reached.

In this paper, only two hidden layers are used. The right figure: Once the network is trained, given any input face, the output of the last hidden layer is used 18
as the feature for image representation.



RBM: Restricted Boltzmann Machine

® Boltzmann Machine (BM) is a particular form of log linear V1
Markov Random Field (MRF)

@ RBM is a variant of BM with the restriction that:
0 Its neurons must form a bipartite graph

V2

V3

[ A pair of nodes from each of the two groups of units (visible, hidden units) me V4

have a symmetric connection between them 2 :b_:.’vj’
[ and there are no connections between nodes within a group V5
® RBM is a shallow, two-layer neural network Visible Hidden
Units  Units
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DBN: Deep Belief Network

® Can be formed by stacking RBMs DBN

® The learning procedure can be divided into two stages:
0 generative learning to abstract information layer by layer with unlabeled samples, and then
[ discriminative learning to fine-tune the whole deep network with labeled samples to the
ultimate learning target

y

Hidden I
layer QOOOOOOOHy
IRBM
':iddcﬂ QOOO0000H, | — |COOCOO00H,,
ayer
IRBM x
}::‘:d:" COO00000 H| > | COOO0000H,| ... COO00000H,
= =
IRBM : + Wang H, Cai Y, Chen L (2014a) A
Input ) : , : vehicle detection algorithm based on
layer LLEOOQOQO v, (SleleleleieleIoy QOOO0COOV; deep belief network. The scientific

0 world journal 2014 20
X



learning

. LUnsupervisedJ
DBM: Deep Boltzmann Machines

® Gained significant attentions in learning of: DBM
[ higher level and more complex representation of data
[ distribution of observations

® Nonlinear latent variables in DBM are organized in multiple
connected layers in a way that:
[ variables in one layer can simultaneously contribute to the probabilities or
states of variables in the next layer
® Each layer learns a different factor to represent the
variations in the given data.

h2

h(D

® In FR, some methods were introduced using DBN, DBM and/or RBM

Table 5 Overview of deep methods based on DBN, DBM, RBM

Algorithm Description/Remark

Chen et al (2013b) A feature learning method by stacking the RBM networks

Yi et al (2015) A local to global learning framework based on RBM for heterogeneous face recognition
CDBN (Huang et al, 2012b) Convolutional deep belief networks to learn features in high-resolution face images
Jhuang et al (2016) Use DBN to train identification model using features with depth information of 3D data

Wu et al (2013) Use DBM to track facial feature under varying expressions and poses
DAMs (Duong et al, 2015) 2 DBMs capture variations of facial shapes and appearances respectively
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0 Jhuang et al (2016): N
¢/ built a DBN based network to learn features /R

v/ three-dimensional face verification approach that includes

three phases: ,. ‘

o point cloud library is applied to estimate features ? oes \-f:----=-----'

o adopt deep belief networks to train the identification
model using extracted features

o face verification is accomplished
v/ DBN:
o one visible layer comprising n neurons
o two hidden layers having n/2 neurons
o one regression layer comprising two output labels

Fig. 8. Deep belief networks architecture.

Jhuang DH, Lin DT, Tsai CH (2016) Face verification with three-dimensional point cloud by using deep belief networks. In: Pattern Recognitionghptl. Conf.
on, IEEE, pp 1430-1435

GAN: Generative Adversarial Network

Unsupervised GAN
learning

® Gained much attention in recent two years
® Adopted to handle more complicated recognition tasks

® General idea:
[ to build two competing neural network models

® Two independent networks, which work separately and act as adversaries

24



R - -
\Random \ ‘
L/ Generator | Fake Face
Noise ‘ Data

Real Face
Data

Predicted
Labels

} ’ Discriminator

* generative model (generator):
[ takes noise as input and generates samples
* discriminative model (discriminator):

0 receives samples from both generator and training data,
[0 has to be able to distinguish between the two sources

® The two models play a continuous game

[ the generator
o learns to produce more and more realistic samples

0 the discriminator

o learns to get better and better at distinguishing the generated data from real data

® The two models are trained simultaneously
® The goal is that:

[ the competition will drive the generated samples to be indistinguishable from real data

25

26



® GAN can be viewed as an architecture able to achieve far better
performance compared to the traditional networks

Table 6 Overview of deep methods based on GAN

Algorithm Description/Remark

Age-cGAN (Antipov et al, 2017b) A aging/rejuvenation method to synthesize more plausible and realistic faces
AgecGAN+LMA (Antipov et al, 2017a) A generative aging/rejuvenation method

GAN-VFS (Zhang et al, 2017a) Visible Face Synthesis method to synthesize photo realistic visible face images
DR-GAN (Tran et al, 2017) GAN based framework for pose-invariant face recognition and face synthesis
DAN (Rao et al, 2017a) A discriminative aggregation network for video face recognition

BLAN (Li et al, 2017) A bi-level adversarial network for makeup-invariant face verification
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[0 Zhang et al (2017a): a GAN based Visible Face Synthesis (GAN-VFS) method
v/ Synthesize visible faces from their corresponding polarimetric thermal images
¢/ The whole network contains an encoder-decoder structure
v/ Learned visible features: outputs of the encoder; input for the decoder
v/ Guidance sub-network: to guarantee the reconstructablllty of the encoded features and to make sure that

the leaned features ‘
GT Guidance
Zhang H, Patel VM, Riggan BS, Hu S (2017a) Generative adversarial | f
network-based synthesis of visible faces from polarimetric thermal —>m > 1a
faces. arXiv preprint arXiv:170802681 Ext

GT Visible

Raw LetLytlp+ Ly
> ——. | Residual  ___ ' Residual |__J___. _— _J
Block Block
. Est Visible
Visible Feature Visible |
Extraction M.

Figure 2: Overview of the proposed GAN-VFES method. It contains three modules. (a) Visible feature extraction module,
(b) Guidance sub-network and (c) Visible image reconstruction module. Firstly. the visible feature is extracted from the raw
polarimetric image. Then. to make sure that the learned feature can better reconstruct the visible image. a guidance sub-
network is involved into the optimization. Finally, the guided feature is used to reconstruct the photo realisticpgsible image
using the combination of different losses.



[0 DR-GAN (Tran et al, 2017)

¢/ Disentangled Representation Learning GAN () for pose-invariant face recognition and face synthesis

Identity Representation m
e
_

g

Figure 1: With one or multiple face images as the input, DR-GAN
can produce an identity representation that is both discriminative
and generative, i.e., the representation demonstrates superior PIFR
performance, and can synthesize identity-preserving faces at target
poses specified by the pose code.

29
Tran L, Yin X, Liu X (2017) Disentangled representation learning gan for pose-invariant face recognition. In: CVPR, vol 4, p 7

(Generator: serves as a face rotator
o an encoder-decoder structured generator
oinput X to the encoder G, is a face image of any pose
o output X of the decoder G 4, is a synthetic face at a target pose
o the learnt representation f(x) bridges Goyc and Ggec

v'Discriminator: do pose classification
o distinguish real X vs. synthetic images X
o predict the identity and pose of a face
o strives for the rotated face to have the same identity as the
input real face, which has two effects on G:
1) The rotated face looks more like the input subject in terms of
identity

2) The learnt representation is more inclusive or generative for
synthesizing an identity-preserving face

30



[ DAN (Rao et al, 2017a)

¢/ a discriminative aggregation network
v/ for video FR

v/ combine the idea of adversarial learning
with metric learning

¢/ aggregate the useful information of an
input video into one or few more
discriminative images in the feature space

Rao Y, Lin J, Lu J, Zhou J (2017a) Learning discriminative aggregation
network for video-based face recognition. In: Proceedings of IEEE
Conf. on Computer Vision and Pattern Recognition, pp 3781-3790

I, Aggregated Images \

A \
| I 1
I I I
I I 1
| I I
1 I I
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1 - 1 1
" i '
I I I
. R .
I 1 !
Input Videos / \ Video Features /
~ P Y S = - ~ i B S -
Image Space Feature Space

Figure 1. The basic idea of our proposed frames aggregation
method. For each video clip, we integrate the information of
videos to produce few synthesized images with discriminative
aggregation network (DAN). The supervision signal of our pro-
posed framework makes the synthesized images more discrimi-
native than original frames in the feature space. Besides, we only
need to pass the few aggregated images into feature extraction net-
work and thus greatly speed up the overall system.
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skip connection

p

Aggregation Network
G

input video

\

® 3 sub-networks

v/ aggregation (generator) network
G,Dand F

® can aggregate video clip into

single image while at the

/

Discriminator Network

same time gain more
discriminative power

negatlve

)

. )
® Loss function
\ :
/ ositive L= A,CDIS -+ T)L:Rec + OOLCCAN
Festure Extraction L£Pis is the discriminative loss
F

LRee s the reconstruction loss
CG AN :

is the adversarial loss

ﬁ convolution

g max pooling

upsampling

I:I fully connected

Figure 2. Detailed architecture of our proposed framework. The numbers are either the feature map channel for convolutional blocks or
feature dimension for fully connected layers. The output of aggregation network is then fed into discriminative network for adversarial
learning, and the feature extraction network to increase discrimination. Different losses are applied at different places as illustrated in the 32

figure.



Some GAN variants
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(a) Conditional GAN (b) Semi-Supervised GAN (¢) Adversarial Autoencoder DR-GAN
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= Conditional GAN
® extends the GAN by feeding the labels to both D
G and D to generate images conditioned on the
label, which can be the class label, modality ' 1
information, or even partial data for inpainting % =
1
® In conditional GAN, D is trained to classify a |
real image with mismatched conditions to a i -
fake class !
]
}
: |
'=< class noise z
(a) Conditional GAN

34
Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv preprint



» Semi-Supervised GAN

c=K
c=K+1

® Generalizes GAN to learn a discriminative classifier

® D is trained to not only distinguish between real and
fake images, but also classify real images into K classes

® D outputs a (K+1)-dim vector with the last dimension for
the real/fake decision

>

® The trained D is used for image classification

| |

class noise z

L TN

(b) Semi-Supervised GAN

35
Odena A (2016) Semi-supervised learning with generative adversarial networks. arXiv preprint

» Adversarial Autoencoder (AAE)

® G is the encoder of an autoencoder n

® has two objectives in order to turn an
autoencoder into a generative model:

v/ the autoencoder reconstructs the input image

Sy
"
S
>

v/ the latent vector generated by the encoder matches an
arbitrary prior distribution by training D

=== N

p@) ! Genc !

(¢) Adversarial Autoencoder

36
Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B (2015) Adversarial autoencoders. arXiv preprint



= DR-GAN

e D classifies a real image to the corresponding class
based on the label

® DR-GAN differs to AAE in two aspects:

v/ First, the autoencoder in AAE is trained to learn a latent
representation similar to an imposed prior distribution, while f
DR-GAN encoder-decoder learns discriminative identity :
representations !

l
1
1
1
1
1
|

|
noise z

¢/ Second, D in AAE is trained to distinguish real/fake distributions

while D in DR-GAN is trained to classify real/fake images, the o
identity and pose of the images G
e - X
DR-GAN

37
Tran L, Yin X, Liu X (2017) Disentangled representation learning gan for pose-invariant face recognition. In:

RNN: Recurrent Neural Network

® A special network to deal with sequences of inputs

learning

® The connections between units form a directed cycle,
allowing it to exhibit dynamic temporal behavior

>
»

Figure from: http://peterroelants.github.io/posts/rnn_implementation_part01/
38



® Can be used for mapping inputs to outputs of varying types, lengths and is
fairly general in its applications
® Has been applied to some tasks, e.g.
[0 Unsegmented, connected handwriting recognition
[ speech recognition
O ... etc.

® but not much to face recognition
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SOM: Self-Organizing Map ggv\

Winner neuron UnSUPer‘Vised
learning

FRTLP NG W W W

Ve a a2 Wa s
VA a" e Wa s 10a W'
Saf Sl el T T T
NN I R R S

® Provides a data visualization technique which
helps to understand high dimensional data by

g \ g reducing the dimensions of data to a map
70K g . . .
® Based on competitive learning, in which
LM % % [ the output neurons compete amongst themselves to
Tnput vector be activated, with the result that only one is activated
FIGURE 2: SOM input and output layers. at one time

Figure from: Yorek N, Ugulu I, Aydin H (2016) Using self-organizing neural
network map combined with ward's clustering algorithm for visualization of
students' cognitive structural models about aliveness concept. Computational
intelligence and neuroscience 2016:6
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® Such competition can be induced/implemented by having lateral
inhibition connections (negative feedback paths) between the
neurons

® The result is that the neurons are forced to organize themselves
°

® SOM was used in face recognition (Alqudah and Al-Zoubi, 2015;
Anggraini, 2014)

® However, they are not treated as a deep learning method

&>

4

[RBFN/

RBFN: Radial Basis Function ;

|~ 4 >
N etWO rk upervised “ Unsuper'vised
learning learning

® Built upon function approximation theory in mathematics

® Consists of 3 layers: input layer, hidden layer, output layer

* The hidden units known as radial centers
provide a set of functions that constitute an
arbitrary basis for the input patterns

* The mapping from:

0 inputto a high dimension hidden space is
nonlinear
0 hidden to output space is linear

C4
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® \With a sufficient number of radial basis function units, RBFN can also be a
universal approximator

® The hidden units can use different radigl functions:

Gaussian

D(z) = e 2.7

Thin Plate Spline &(2) = z2logz

Quadratic
Inverse Quadratic D(z) =

D(z) = (22 + r2)1/2

1
FEIABE* = llz — <l

® Since RBFN exhibits several advantages:
[ global optimal approximation
[ classification capabilities

® it has been found to be very attractive for many engineering problems,
including face recognition

® However, they are not considered as deep learning methods for face

recognition
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Hybrid Architectures

® Combine two or more types of neural networks

0 AE+DBM
0 CNN+AE
[0 GAN+CNN, etc.

Table 7 Overview of deep methods using hybrid architectures

Algorithm

Description/Remark

Goswami et al (2017)

Nagpal et al (2015)

MM-DFR (Ding and Tao, 2015)
Convnet-RBM (Sun et al, 2013)
MDLFace (Goswami et al, 2014)

McDFR (Chen et al, 2015¢c)

Zhang et al (2017c)
Gan et al (2014)

SDAE; DBM; For crossmodality learning

SDAE; DBM; Learn weight invariant facial representations

CNNs: extracts complementary facial features; SAE: compress dimension

CNN: characterize face similarities; RBM: perform inference

SDAE: robust to noise; RBM: learn internal complex representation; DNN
Deep AE: extract generic feature of each facial regions; DNN: get discriminative
feature; DNN: classification

GAN:generative capacity; CNN: discriminative feature extraction

multi-layer network architecture; graph embedding framework
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O Stacked denoising sparse autoencoder + DBM

[l Goswami et al (2017)

¢/ built a deep learning
framework for video based FR

----See video section

Input Layer 1 Layer 2 Joint 3-Layer DBM

Image Encoding Encoding Representation Input Output
" M N MN M. N M N MN

MxN 2 X TxT 2x(Txq) 2x(TxF) F

Fig. 5. Proposed deep learning architecture for facial representation: from
input layer (image). two hidden layer representations are computed using
SDAE encoding function. A joint representation is then obtained which
combines the information from two SDAE encoding layers. Using joint
representation as input, a DBM is used for computing a final feature vector.

Goswami G, Vatsa M, Singh R (2017) Face verification via learned representation on feature-rich video frames. trans on Information, 5
Forensics and Security 12(7):1686—-1698

O GAN + CNN

0 Zhang et al (2017c)

COmb'ned CNN model for color face images -
. 7 @ Deepfeature
V the generatlve Color face images ﬁ — W e
capacity of conditional ! ° images
GAN (CGAN) Pre-train .

¢/ and the discriminative

feature extraction of Deep
CNN - ’Z correlated Sy
Depth recovery with cGAN for ! Two-stream CNN model for 1 Correlated Loss features for Joint
v/ for cross-modality J il vew ol oces | clrfoeabtcalungn | Kook ) color& | ] Recognition
learning g depth face 4
images

. E’h R’ ]

@ Deep feature
Depth face images for depth =
(Left: ‘real” Right: ‘fake’) face images

\ CNN model for depth face images J

Figure 1: Overview of the proposed CNN models for heterogeneous face recognition. Note
that (1) depth recovery is conducted only for testing; (2) the final joint recognition may or
may not include color based matching, depending on the specific experiment protocol.
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Zhang W, Shu Z, Samaras D, Chen L (2017c) Improving heterogeneous face recognition with conditional adversarial networks. arXiv preprint



e, ® Training data contains image pairs {x,y},
color  real depth noise color where x and y refer to the depth and

. n . color faces respectively with a

one-to-one correspondence between
them

® y (color faces) can be involved in the
model as a prior for generative task
7'*“6’ ® The optimization for cGAN:

| depth
U the mini-batch SGD and the Adam solver are
applied to optimize G and D alternately

T

Discriminator [~ OP% | { Discriminator

Real/Fake e Real/Fake
Loss N Loss

(a) Workflow of cGAN Mirza M, Osindero S (2014) Conditional generative;adversarial
nets. arXiv preprint arXiv:14111784

ross-moda
| CNN

Model

" n322  neax2

features after
fine-tuning

features in pre-y
trained model |

I’I 'w‘/ il ) X “‘
Color face L 4 AW e a006 My 4096
images | ([ H[ > — —— —
' Softmax
o
: Modalvspeciﬂci Correlated
}

Correlation

PP

Loss

Depth face . .
images ' M 4096

1 !

4

Figure 3: Training procedure of the cross-modal CNN model. Models in the dashed box are
pre-trained using 2D and 2.5D face images individually.

e Once a pair of unimodal models for both views (depth and color) are trained, the
modal-specific representations, {X,Y}, can be obtained after the last fully
connected layers

e a joint supervision is required to enforce both correlation and distinctiveness 4s

cimiiltananiichs



@ Auto-Encoders + DNNs

00 McDFR (Chen et al,
2015c)

¢/ produce a generically
descriptive ?/et
class-specific deep
multi-channel
representation

v/ use unsupervised and
supervised learning in a
cascaded fashion

sl

Generic femuri learning Class specific lieamre learning Classification
1
(h: -l — \Il 1
Images - (@) ()] L L] 1
— H Y B : an B
- HEE : H . 1
JE L& S BN o
£ = = (R Vi
hi he h — 1
o (@ (@ | (* [I® ® &l D
0 5.8 L L e
: AR EIEERE NN H
r (o) o] lof ) (o R
= (oo =) = (i) ® 1 _
B e (o | 1®/® [¢] [of 3
AN E H o I = IR g 1 &
. HuH W E - il ‘> - <}
. olo o) |0 (&S & |o| ! g
= = =@ (o o o I|:
TN
S HE N RS AR
. e * ) - ® o L ] ® 1
.= = &=y < :
Audio : :
[ 1
]
1

Generic . ?M\llti—ch:mlnel Face recognition
features DND representations

Figure 1: Outline of the proposed multi-channel deep feature representations for face recognition. The input data

(images or other multimedia data) is first preprocessed. In each channel, generic features are learned
on a (unlabeled) facial region or audio data through a deep autoencoder (DAE), and then class specific
features are learned under supervision by feeding generic features into a DNN. The learned features from
multiple channels are fused together as the final representation which is used as input to another DNN
for classification.

@ CNN + Stacked Auto-Encoder

[0 MM-DFR (Ding and Tao, 2015)
v/ integrated a set of elaborately designed CNNs and a three-layer SAE
¢/ The CNNs extract complementary facial features from multimodal data
v/ the extracted features are concatenated to form a high-dimensional feature vector, whose dimension is

compressed by the SAE

Input Image and
3D Face Model

Ding C, Tao D (2015)
Robust face recognition via

1
1

: 1
1
: ‘e, : multimodal deep face
RLINrY I representation. |IEEE trans
| 1% el e | on Multimedia
| ::: el @) ! 17(11):2049-2058
I . I o
athit i
: 1 : 1@, :. I
12 '@ @
@' -
| io: d E
: 1 @! ]
1 = 1
Tl e e
Set of CNNs Stacked Auto-Encoders

Fig. 2. Flowchart of the proposed multimodal deep face representation (MM-DFR) framework. MM-DFR is essentially composed of two steps: multimodal
feature extraction using a set of CNNs and feature-level fusion of the set of CNN features using SAE. 50



Loss Functions

® |n various deep neural networks, usually there is a loss layer, normally the
final layer, which specifies how to penalize the deviation between the
predicted and true labels in training

® An effective loss function:
[ can improve the discriminative power of the deeply learned features

® Intuitively, the learning should:
0 minimize the intra-class variations and maximize the extra-class differences
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 Various loss functions have been proposed

A-Softmax

Softmax Marginal Loss
o _J"/F-ﬁ\\*’"‘“\ .
L-Softmax "_Correlation Loss < Center Loss il 3 :
( ) ¢ ) ~Contrastive Loss

" Range Loss
Lz2-Softmax =~ A= W oaitR—
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0 Softmax Loss 0 Angular Softmax (A-Softmax)
v/ often used for predicting a single v/ Adds an angular margin to softmax loss
class of K mutually exclusive classes ¢ Renders a geometric interpretation by
constraining learned features to be
discriminative on a hypersphere manifold,

m o Wa zitby, which intrinsically matches the prior that

Ls=— Z 5 faces also lie on a nonlinear manifold
, g e
=1 ]1=

“11”\9(0J, i)
v clsanen. W welahts T Tiss -1
m: classes, W: weights, b: bias Lang = N Z O(l( lzille(Oy,,i) 4 Z e ||z || cos(8,4)
‘r"‘(elh.l) = (—l)kcos(’ngu.,l) —2k

Oy,.i € (2=, EEDx) k¢ [0,m - 1],

m(> 1): an integer controling the size of angular margin

53
[ Large-margin Softmax OL2-Softmax
(L-Softmax) v/ add an L2-constraint to softmax
v To explicitly encourage intra-class loss _
compactness and inter-class v/ restricts the features to lieon a
separability for the learned features hypersphere of a fixed radius
v It can not only adjust the desired .
margin but also avoid overfitting Wi f(X)+by,
L Z 10(/ WJTf(AiH-bJ
. - Wy llllz:lle(9y,) \ -
i = —log = —s AT Tp—y minimizes £, subject to || f(X;)|2 = a,V i=12,..
MWuilllzlle @) 1y, elWsllla:llcos(e;)
p . COS(IIIH). if 0 < 0 < % Xi:input in a mini-batch of size M, y;:class label, C:# classes
Y( - D(H) if -7% % 6 T f(X;): feature descriptor obtained from the penultimate layer

W,b: weights, bias for the last layer which acts as a classifier
where m is a integer that is closely related to the
classification margin, D(f) is a monotonically decreas-
ing function and D(.-) should equal cos(-)
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[l Correlation Loss
v’ encourage the large correlation

between the deep feature vectors and
their corresponding weight vectors in

softmax loss

v’ applies a weight vector in softmax loss

as the prototype of each class

Z cos(f,,) Z
||u i

W,,: weight vector

0Range Loss

v/ Inspired by contrastive loss

v/ to utilize the tailed data in training
v/ can reduce the overall intra-personal
variations and enlarge inter-personal
differences simultaneously

v/ unlike the contrastive loss defined on

individual positive and negative pairs,

range loss is defined on the overall
distances between all sample pairs
within one minibatch

Lrp=0aClpg + BLR

intra inter

where a and 3 are two weights

Lg,.,.. denotes the intra-class loss

Lp. represents the inter-class loss
inter

0 Contrastive Loss
¢/ runs over pairs of samples

L(H'.Y..\—':..\—'S) = (1- Y)%(Dw)"’ + (Y)%mu.r(f).m — Dw)?

Let X;,X5 € I be a pair of input vectors

Let Y be a binary label assigned to this pair

Y = 0if X; and X5 are deemd similar

Y = 1 if they are deemed dissimilar

Define the parameterized distance function to
be learned Dy between X, X, as the euclidean
distance between the outputs of Gw

m (> 0): a margin
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0 Triplet Loss

v aims at ensuring a face image of a
specific person (anchor) is closer to
other images of the same person
(positive) than to images of any other
persons (negative)

= — 2Pl + & < llaf — 27 ll3, (2, 27, 27) € 7

a: a margin, 7: set of all possible triplets

N

=Y llF @) - F D3N f (=)~ Fe)3+al+

i
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O Multi-class N-pair Loss 0 Marginal Loss

v’ Since contrastive loss and triplet ¢ to minimize intra-class differences and
loss often leads to a slow maximize interclass distances by focusing on

convergence ‘
_ the marginal samples
v/ address this problem
¢/ can significantly improves upon Lo I
the triplet loss by pushing away L= o 2 €= va(0= I =2 l)
multiple negative examples 0173 e =
J0|nt|y at eaCh Update where x;,x; are two face samples,
@ is a threshold of distance,
LN —pair—mc({ (i I?L)};f\;l;f) = Yij € + shows whether faces x; and z; are
N from same or different classes,
2 Z log(1 + Z exp(f’ i+ — £ 1H)) € is error margin besides the classification hyperplane.
A“‘\‘r 2 2 1 1
i=1 j#i

Let x be an input data,
™ and ~ be positive and negative examples of x,
f be kernal taking x and generating an embedding vector f(x)
57

[ Center Loss 0 Contrastive-Center Loss
v learns a center for deep features in v/ center loss only considers intra-class
each class compactness

v/ consider both intra-class compactness
and inter-class separability
v/ by penalizing two contrastive values, i.e.,
o distances of input to its
corresponding class centers
o the sum of the distances of input to
its non-corresponding class centers

v penalizes the distances between
the deep features and their
corresponding class centers

v It effectively characterizes the
intra-class variations

1 m

fo= 13" s =a2
=l 1 Iz — ey, I3
Lct—c = sz =

k o %
¢y, € R%: y;th class center, i—1 (ZJ':l.j;éy. [|; — CJH:_S) + 0
z;: input vector, m: # classes

4: constant for preventing denominator equal to 0
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[ Congenerous Cosine (COCO) Loss

v’ consider both feature discrimination and polymerization by directly
optimizing and comparing the cosine distance (similarity) between features

v’ has the softmax property to make features discriminative and keeps the
idea of class centroid

LCOCO(f), c) = — D ieB,k tfj)logpgf) =—2icB logpfj)

f(D): feature vector of i-th sample;
B: mini-batch; ¢x: centroid of class k;
k: index along the class dimension in REK.

tﬁf) € {0, 1}: binary mapping of sample i based on its label [;
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There are some other loss functions:
[ verification loss and classification loss used in DeeplD2, DeeplD2+

[l Sigmoid Cross-entropy loss is used for predicting K independent probability values in [0,1]

In unsupervised deep learning, there are also some loss functions:
[IReconstruction error used in AE and its variants
0Square-loss function
Ocoupling error
Hetc.
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Activation Functions

® Decides whether a neuron should be activated or not

[ If activated, it means the information that the neuron is receiving is relevant for the given
information

[ otherwise the information will be ignored

® Nonlinear transformation

® The transformed output is sent to next layer of neurons as their input

Table 9 Description of common activation functions

Activation function Definition
Sigmoid flz)=(1+e>)1
Tanh f(z) = tanh(z) = 1+3421 1
z ifzx>0
ReLU =
> @ =10, itz<o0
' o £ ifz>0
ball F@)=V001ez, ifz<0
g x, ifz>0
P f(a,z)= {a * T, ifz<0
= Yi, ify; >0
U i Yi) = 3
e Team) {ai *yi, ifyi<0
. z ifz>0
U SE) =4
e f@2)=ae==1), ifz<0
Maxout maz(w] z + by, wl'z + by)
33
Gaussian D(z) =e %7
Thin Plate Spline &(z) = 22logz
Quadratic &(z) = (22 4+ r2)1/2
?(2)

Inverse Quadratic

T s

A

(d) (e) (f)

(9) (h)
Activation Function. (a) Sigmoid (b) Tanh (c) ReLU (d) LReLU
(e) PReLU (f) RReLU (g) ELU (h) Gaussian



— fl@)=(1+e%)""
[ Sigmoid

¢/ Squashes real-valued number into the range
between 0 and 1

v/ However, the sigmoid is rarely used in deep
networks:

o when the activation of a neuron saturates
at either tail of O or 1, the gradient there
is almost zero, resulting in almost no
signal flowing through the neuron to its
weights, and recursively to its data

o the sigmoid outputs are not
zero-centered

0, ifz <0

/// ﬂﬂz{L ifz>0

[l ReLU: Rectified Linear Units

v

v
v
4

=

0 Tanh:

Squashes a real-valued number to
the range of [-1, 1]

Like sigmoid neuron, its activations
saturate

but unlike the sigmoid neuron, its
output is zero-centered

Therefore, in practice the tanh
nonlinearity is preferable than the
sigmoid
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¢/ It increases the nonlinear properties of the decision function and overall network without

affecting the receptive fields of the convolution layer

¢/ It trains the neural network faster without a significant penalty to generalization capability

¢/ Compared to tanh and sigmoid neurons that involve expensive operations, ReLU can be
implemented by simply thresholding a matrix of activations at zero

v/ Offers a way to separate noisy data from informative signals

¢/ If a neuron is not activated, its output value will be 0

v/ However, this thresholding might lead to the loss of some information, especially for the first

several convolution layers.

v/ LRelLU, PReLU and ELU are proposed to alleviate this problem
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,/ f(z) = tanh(z) = ﬁ -

1



. ifz>0
f(z) = {0.01*1, ifz<0

[l LReLU: Leaky rectified linear unit (Leaky ReLU)

¢/ The motivation is to avoid zero gradients

v/ Experiments carried out by Maas et al (2013) showed that the LReLU has negligible impact
on accuracy compared with ReLU

v/ Instead of the function being zero when x<0, a leaky ReLU will instead have a small
negative slope (of 0.01, or so)

v/ Some researchers reported success with this form of activation function, but the results are
not always consistent
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T, ifz>0
axz, ifz<0

o=

[ PReLU: Parametric Rectified Linear Units
v’ a is a coefficient controlling the slope of the negative part
¢/ When a = 0, it becomes RelLU
¢/ When a is a learnable parameter, it is referred to PReLU
¢/ Equivalent to f(x) = max(0, x) + a-min(0, x)
v/ If ais small and fixed, PReLU becomes Leaky ReLU (LReLU) (a = 0.01)

¢/ PRelLU can be trained using backpropagation and optimized simultaneously with other
layers

66



0 Maxout

v/ Generalizes RelLU and its leaky version

¢/ It has the benefits of a ReLU unit (linear regime of operation, no saturation), while does not have its
drawbacks

¢/ Unlike ReLU, it doubles the number of parameters for every single neuron, leading to a higher
number of parameters in total

0 Max-Feature-Map

¢/ Proposed with the Light CNN (Wu et al, 2015)

¢/ It can be treated as an extension of Maxout activation

¢/ Different from Maxout activation that uses enough hidden neurons to approximate an arbitrar){_ ht
19

gcr)]gvl%élf}ért\ction, MFM suppresses only a small number of neurons to make the CNN models
® In RBFN, the hidden units often use as the activation function
0 Gaussian radial function
0 thin plate spline
0 quadratic
0 inverse quadratic
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