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® FR has been applied widely to daily lives

access control video surveillance

® The demands of FR are also growing quickly in recent years
® In practice, FR is affected by many factors in unconstrained FR

low resolution pose variation complex illumination ~ motion blur
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® Traditional algorithms

0 may not do well for unconstrained face
matching

0 Eigenfaces
0 Fisherfaces

e Bayesian face

eNeural network (NN)

¢/ Brings in a new direction for FR research

® In many pattern recognition systems, compared to traditional
methods

¢ NN is an effective construct

¢/ Has been shown to demonstrate many tangible advantages with regards to its
learning ability, generalization aspect, and robustness

So, what is NN?




NN

v/ Abiologically inspired mathematical model

¢/ A machine learning algorithm inspired from the working of human brain which enable a
system to learn from some observational data

¢/ Asimple NN consist of an input layer, a single hidden layer and an output layer
¢/ which contain a number of neurons that can be activated or not

Simple Neural Network

@ nput Layer ) Hidden Layer @ Output Layer 9

eAdvantages of NN
v’ Adaptive Learning
v’ Self-Organization
v’ Real Time Operation
v’ Fault Tolerance via redundant information coding
v/ the abilities to handle complicated or imprecise data
v’ Can capture the complex face patterns for FR
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Deep Learning

@ v . | . R
A ® A machine learning technique that performs learning in multiple
J hidden layers of nonlinear processing units

A
ﬂ ® |t is a deep neural network(DNN)

® Each successive layer of DNN uses the output from the previous
layer as input

Deep Learning Neural Network

() A
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® Recently, Deep Neural Network has established itself as a dominant
technique in machine learning

® Deep and large networks have exhibited impressive results when there are
large training data sets and computation resources (many CPU cores

and/or GPUs)
A
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® Due to deep learning techniques, there have been significant
advances in face recognition

® In early time, research interests mainly concentrated on face
reé:ogrfutlon with deep networks on visible light face images and/or
video faces

Visible
images

Video
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® \With the emergence of various types of face data, research concentrations
have also focused on some specific tasks

0 robust to changes of pose, illumination, expression, age, etc.

[ improving performance of video, 3D, and heterogeneous FR
v e.g., NIR-VIS, photo-sketch, still-to-video

RGB-D photo-sketch NIR-VIS

14



® Some related surveys overviewed methods on handling:
[ pose, expression, occlusion
[ Infra-red, single-modal and multimodal
0 video, 3D, heterogeneous face matching
0 ... etc.

® However, most of them focus on the traditional methods

® Few has been related to deep learning methods
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® \We present a complete, comprehensive overview of FR works using deep
learning

[ Consider both the deep architectures and specific recognition problems
[ Most are within the recent five years
[ Give a review of related face databases

® |t is expected to cover most, if not all, of the works incorporating deep
learning methods for face recognition.
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By this survey, we show that:

® Deep learning methods have been fully used in face
recognition and played an important role

® Many specific issues or challenges to address in FR, such as
pose, illumination, expression, 3D, heterogenous matching,
etc.

® | ots of face datasets have been collected in recent years,
including still images, videos, and heterogeneous data useful
for cross-modal face matching
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*Some Specific Face Recognition Problems

eDatabases

® Most deep neural networks can be
grouped in two categories:
® Supervised learning:
[ Use class labels directly for the deep models

0 Find model parameters that best predict the data
with loss function(s)

® Unsupervised learning:
0 Process data without using class labels
[ To find patterns, such as latent subspaces
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RBFN: Radial Basis Function Network
CNN: Convolutional Neural Network
RNN: Recurrent Neural Network
DBN: Deep Belief Network

AE: Autoencoder

DBM: Deep Boltzmann Machine:
SOM: Self-Organizing Map

GAN: Generative Adversarial
Network

20



Paper Distribution of Different Architectures

6% ;
\ RNN: not much to FR
SOM, RBFN: not much

using deep learning
- technique

= CNN = AE = RBM/DBN/DBM GAN = Hybrid
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CNN: Convolutional Neural Network

e Contains convolutional, pooling, fully connected layers 2ol

i . W = Wl, Wz, - Wk : learnable filters
e Convolutional layers: B = By By st b
Xk: feature map
o(*): element-wise nonlinear
transform

e POOIIng IayerS: t: t-th convolutional layer
[ A form of nonlinear down-sampling

Xt =o(Witx X405

[0 max pooling, average pooling, L2-norm pooling

Most Popular

[ CNNcouId decrease the dimension dramatically by convolutional layers
and pooling layers with convolution filters of a small extent, then send to a
fully connected layer

22



® LeNet (1998): probably the first successful real world application of CNN
for hand-written digit recognition

1 foad C3: . maps 16@10x10

: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 ps 16@
32x32 S2: . maps
6@14x14

|
Full conr{ection ’ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.
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LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proceedings of the IEEE
86(11):2278-2324

® \When AlexNet (2012) was proposed, further progress has been made
using deeper architectures

204 2048 \dense

Tl dense dens
1000
192 128 Max

Max 128 Max pooling 294 2048
pooling pooling

224

48

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896—64,896-43.264—
4096—4096-1000.

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp;1097-1105
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® A large number of current CNN based face recognition methods obtained robust features and
outperformed the traditional methods

Accuracies of CNN based Deep Methods on LFW
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% Single CNN

* Typical deep face recognition approaches use a

single CNN

S Number of Papers

Single CNN

Variants of CNN

mutti cnn- [

Others
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input ~ Hidden  outpyt
Table 1 Overview of deep learning methods based on single CNN Layers
Algorithm Description/Remark
DeepFace (Taigman et al, 2014) Employ 3D face modeling to apply a piecewise affine tranformation to derive feature
Web-Scale (Taigman et al, 2015) Use a bootstrapping process to select an efficient training set from a large dataset to
alleviate performance saturation
Wu (2015) Use MFM activation function and get better performance than DeepFace, WebFace
FaceNet (Schroff et al, 2015) An gnd-to—end system; Directly learn a mapping from face images to a compact
Euclidean space; Has great representational efficiency
VGGFace (Parkhi et al, 2015) Combine very deep convolution neural network and the triplet embedding
/ang et al (2017c) Apply a Discriminative Covariance oriented Representation Learning framework
Li et al (2015b) Batch learning strategy; Mahalanobis metric and distance threshold for optimization
3 An algorithm suitable for real time use in an embedded environment with limited
Grundstrom (2015) . :
space and restricted computational resources
Seo et al (2015) A multi-task learning; Use two-stage learning strategy to minimize error functions
: Light frameworks with reduced parameters and time to learn a 256-D compact
b AR ey aa embedding on the large scale face data with massive noisy labels
DeepVisage (Hasnat et al, 2017) Incorporate residual learning framework; Normalized features used for softmax loss 26



Sankaranarayanan et al (2016)

iruber et al (2017)
Center Loss (Wen et al, 2016b)
VLAD-DCNN (Zheng et al, 2016)
SphereFace (Liu et al, 2017b)
Smirnov et al (2017)
NR-Network (Ding et al, 2017)
Yeung et al (2017)

He et al (2015b)

Sparse ConvNets (Sun et al, 2016)
srm et al (2016)

Yang et al (2017)

Hayat et al (2017)

Park et al (2017)

Hsieh et al (2017)

FV-DCNN (Chen et al, 2016b)
Hu et al (2017a)

Lumini et al (2016)

Chen et al (2016a)

NormFace (Wang et al, 2017a)
Jones and Kobori (2017)

Deep CNN based approach combined with a low-dimensional discriminative
embedding which are learned by triplet probability constraints

Use a 50-layer deep residual network ResNet to face recognition task

With the joint supervision of softmax loss and center loss

Combine VLAD feature encoding with DCNN features

Learn features with angular margin; Discriminative on hypersphere manifold
Insert sampling method into feature learning process

Learn noise-robust deep feature representation

A constrained triplet loss layer to be replaced at the bottom of neural network

A predictable hash code algorithm; Map face samples to Hamming space

With sparse neural connections in an iterative way from the previously learned
denser models with a neural correlation based weight selection criterion

A two-structural parts network; Convolutional layers try to capture the joint
characteristics of input image pair; Fully-connected layers produce a similarity index
A fully convolutional structure with higher speed and less computational cost; Use
max-feature-map as activation function

A data-driven approach which can jointly learn registration with representation
Get features directly used to determine if two input images are identical

A multi-task learning model; Incorporate identity and high-level human attributes
Combine deep feature and Fisher vector representation

Fuse facial attribute feature with face recognition features

Combine deep features and hand-crafted features

Use a joint Bayesian metric learning to assess the similarity

Use normalized features to train DCNN

Use hyperplane similarity to train CNN

[0 DeepFace (Taigman et al, 2014)

v a 9-layer CNN
v input is preprocessed with 3D-aligned, 3-channel (RGB) face images

v’ Several locally connected convolutional layers are adopted without weight sharing
v every location in feature maps of these layers learns a different set of filters

REPRESENTATION
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Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three
locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million
parameters, where more than 95% come from the local and fully connected layers.

Taigman Y, Yang M, Ranzato M, Wolf L (2014) Closing the gap to human-level performance in face verification. deepface. In: IEEE
Computer Vision and Pattern Recognition



0 Web-Scale (Taigman et al, 2015)

v’ an extension of DeepFace
v’ replace the naive random subsampling of training set
v’ the Web-Scale used a bootstrapping process to select a more efficient

training set

O o DB,
- O (random)
| o

_ || ()
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| onN 2l Olim o —

gl < . o

o B o
I
] o
= = Figure 3. The bootstrapping method. An initial 256D-compressed rep-

Labels o 4 , . .
resentation trained on D By is used to find the semantically-nearest iden-

tities of randomly picked 100 seeds, in a large pool of pre-trained hyper-
planes. The union of all 100 groups of selected identities define the boot-
strapped dataset DB5y. A larger capacity network with enlarged locally-
connected layers and a 1024D representation is then trained.

Figure 2. The bottleneck. The representation layer splits the network
between the part that converts the input into a generic face descriptor and
the part that performs linear classification to specific K classes. FC7 and
FC8 are the low-rank matrices that project to- and from the bottleneck.

Taigman Y, Yang M, Ranzato M, Wolf L (2015) Web-scale training for face identification. In: Proceedings of the IEEE Conf. ormpg
Computer Vision and Pattern Recognition, pp 2746-2754

[0 FaceNet (Schroff et al, 2015)

v/ learned a mapping from face images to an Euclidean space where
distances directly correspond to a measure of face similarity

v It optimizes the embedding itself by a triplet loss rather than an
intermediate bottleneck layer in some previous networks.

Negative

! >| DEEP ARCHITECTURE | (=4 AK LEARNING ./0 .
Negative
Anchor ®

Batch Positive Positive

Figure 2. Model structure. Our network consists of a batch in- Figure 3. The leiplet Loss minimizes the distance bereep an an-

put layer and a deep CNN followed by Ly normalization, which (‘/mr. ul}d a positive, both of which have the same 1dent{ty. al‘ld

ts in fhe £ beddi This is foll 4 by the tilet 1 maximizes the distance between the anchor and a negative of a
S & / il i : 3

results in the face embedd mg. 1S 1S 1T0ollowe y the tr 1p et loss different identity.

during training.

Gz-oommZm

Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and clustering. In: Proceedings of
the IEEE Conf. on Computer Vision and Pattern Recognition, pp 815-823
30



0 VGGFace (Parkhi et al,2015)

v is a deep convolutional neural network

v’ they comprise a long sequence of convolutional layers

v fine-tunes the model via a triplet-based metric learning method like FaceNet

layer

0

3

3

<]

I
etwork configuration. D

0
etails of the face CNN

2 B 6 7 8 9 10 11 12 13 14 15 16 17 18
type | input  conv rlu  conv relu  mpool conv ®lu conv rlu  mpool comv relu  conv ®lu  conv ®lu  mpool conv
name - convl_1 relul_I convl_2 rlul_2 pooll conv2 1 relu2 I conv2 2 relu2 2 pool2 conv3_1 relu3_| conv3_2 relu3_2 conv3_3 relu3 3 pool3 conv4_|

support | - 3 1 3 1 2 3 1 3 1 2 3 1 3 1 3 1 2 3
filtdim [ - 3 - 64 - - 64 - 128 - - 128 - 256 - 256 - - 256
num filts| - 64 - 64 - - 128 - 128 - - 256 - 256 256 - - 512
stride - 1 1 1 | 2 I 1 1 1 2 1 1 1 1 1 1 2 1
pad 1 0 1 0 0 I 0 1 0 0 1 0 I 0 1 0 0 1
layer 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
type relu conv relu conv relu  mpool conv ®elu conv rlu conv rlu  mpool conv rlu conv rlu  conv softmx
name |relud4 1 conv4 2 relud4 2 conv4 3 mlud 3 poold conv3 | relu5_I conv3 2 reluS 2 com3 3 reluS 3 pools fc6 relub fc7 relu7  fc8 prob
support I 3 1 3 | 2 3 1 3 1 3 | 2 7 1 | 1 1 1
filt dim - 512 - 512 - - 512 - 512 - 512 - - 512 - 4096 - 4006
num filts| - 512 - 512 - - 512 - 512 - 512 - - 4096 - 4096 - 2622 -
stride I 1 1 1 1 2 I 1 1 1 | 1 2 I 1 | 1 1 1
pad 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0
Table 3: N

configuration A. The FC layers

are listed as “convolution™ as they are a special case of convolution (see Section 4.3). For
each convolution layer, the filter size, number of filters, stride and padding are indicated.

Parkhi OM, Vedaldi A, Zisserman A, et al (2015) Deep face recognition. In: BMVC, vol 1, p 6

0 Yeung et al (2017)

31

v introduced a constrained triplet loss layer (CTLL) to improve the recognition

performance

v this loss layer helps the deep learning model to specify further
distinguishable clusters between different people (classes) by:

O placing extra constraints on images of the same person (intra-person)
O while putting margins on images of a different person (inter-person)

| Batch Iﬂ

| Batch rfl?-r{ Deep Neutral Network

Batch |~

L2

| sbuippaquig |

b Triplet Loss

Fig. 1. Triplet Model Structure. The neural network takes a number of batches as input and followed by the deep architecture (CNN). The L2 normalization
layer will produce the face representations (embeddings). At the end, the triplet loss function is applied on these embeddings

Yeung HWF, Li J, Chung YY (2017) Improved performance of face recognition using cnn with constrained triplet loss layer. In: 55

Neural Networks, Intl. Joint Conf. on, IEEE, pp 1948-1955



0 Lietal (2015b)

v/ a 7-layer CNN model for age-invariant face verification
v/ can learn features, distance metrics and threshold simultaneously
v/ two tricks to overcome insufficient memory capacity and reduce computational cost

801
Convolutional
et Convolutional
63 layer2
21 400 400
17 e
1 L 30 S \'_’() 1 peieye !
i = @E[‘*\»‘* N_f B %é gt::;;g -f:f-
180 [ 3 = W H— N
Max-pooling 32 kemels Ma:(-po:);i:\g__—_
LiY, Wang G, Lin L, Syor aye
Chang H (2015b) A deep 32 ernels
joint learning approach for Pully-connectedlayers
age invariant face RGB image input layer
verification. In: CCF
Chinese Conf. on
Computer Vision, Fig. 2. Architecture of our model. The first and the third layers are convolutional
Springer, pp 296-305 layers, the second and the fourth are max-pooling layers. The last three layers are
fully-connected layers. 33
0 Light CNN (Wu et al, 2015)
. . Light CNN-4
v’ presented 3 light frameworks following the Light CNN-9
P g
idea of: Light CNN-29
o AlexNet
o VGGFace .
o ResNet (residual networks) 0 g o™ L,
. .y KT.O : i ] O
v not only obtain better performance but also h - Eﬁ%%/max&ﬂ
2 . FM, X
reduce parameters and time-consuming ,
. ) ) (a) ReLU: h(z)=max(0, z1) (b) Maxout: h(z)=max(z?)
v introduce Max-Feature-Map (MFM) activation y
into each convolutional layer of CNN [ 6" AT e == =
) . ;,;WLE;;O’E [ 0.
v/ adopt a semantic bootstrapping method to P [l
deal with noisy labels (re-label the training ) : 1 |
data) (¢) MEM 21: h(z)=max(z!, z2) (d2) MFM '3l2: _ h'(z)=max(z?"),
h*(z)=median(z*)

Figure 1. A comparison of different neural inhabitation. (a) ReLU

V Iearn a CompaCt embed_ding (256-D) Qn the suppresses a neuron by thresholding magnitude responses. (b)
Iarge-scale face data Wlth massive nOISy Ia beIS Maxout with enough hidden units makes a piecewise linear ap-

proximation to an arbitrary convex function. (c) MFM 2/1 sup-
presses a neuron by a competitve relationship. It is the simplest
case of maxout activations. (d) MFM 3/2 activates two neurons

Wu X, He R, Sun Z, Tan T (2015) A light cnn for deep face representation with ~ 2"¢ Suppresses one neuron. "

noisy labels. arXiv preprint arXiv:151102683



0 Center Loss (Wen et al, 2016b)

v’ proposed a center loss
function to learn a more
discriminative feature

v learns a center for deep
features in each class

v’ penalizes the distances
between the deep
features and their
corresponding class
centers

v It effectively
characterizes the
intra-class variations

Wen Y, Zhang K, Li Z, Qiao Y (2016b) A
discriminative feature learning approach
for deep face recognition. In: European

Conf. on Computer Vision, Springer, pp

499-515

C: The convolution layer

P: The max-pooling layer

LC: The local convolution layer
FC: The fully connected layer

Softmax
Loss

Center
Loss

Fig. 4. The CNN architecture using for face recognition experiments. Joint supervision
is adopted. The filter sizes in both convolution and local convolution layers are 3 x 3 with
stride 1, followed by PReLU [12] nonlinear units. Weights in three local convolution
layers are locally shared in the regions of 4 x 4, 2 x 2 and 1 x 1 respectively. The
number of the feature maps are 128 for the convolution layers and 256 for the local
convolution layers. The max-pooling grid is 2 x 2 and the stride is 2. The output of the
4th pooling layer and the 3th local convolution layer are concatenated as the input of
the 1st fully connected layer. The output dimension of the fully connected layer is 512.
Best viewed in color. (Color figure online) 35

[0 Sankaranarayanan et al (2016)

v’ to address the unconstrained face verification
v’ couples a deep CNN-based approach with a low-dimensional discriminative

embedding step

v a triplet probability embedding learning method to improve the performance

of deep features

Layer Kernel Size/Stride #params

convl 11x11/4 35K

pooll 3x3/2

conv2 5x5/2 614K

pool2 3x3/2

conv3 3x3/1 885K

conv4 3x3/1 1.3M

convs 3x3/1 2.3M

convb 3x3/1 2.3M

conv7 3x3/1 2.3M

pool7 3x3/2
fc6 1024 18.8M
fc7 512 524K Sankaranarayanan S, Alavi A, Castillo CD,
fc8 10548 10.8M Chellappa R (2016) Triplet probabilistic

Softmax Loss Total: 39.8M embedding for face verification and clustering.

In: Biometrics Theory, Applications and

Table 1: Deep Network architecture details Systems, Intl. Conf. on, IEEE, pp 1-8 36



0 Sparse ConvNets (Sun et al, 2016)

v learned an effective DCNN model with sparse neural connections
v to get good initializations and avoid bad local minima
v’ which is derived from a baseline high-performance VGG-like deep network

type patch size/ | output size params . . . .
stride o starting point: the high-performance well trained

convolution (1a) 3 x 3/1 112 x 96 x 64 | 1.8K baseline model

conyoliition (1) 3x3/1 IRxoax &L 3K o Then delete connections in the baseline model in a

max pool 2% 2/2 56 x 48 x 64 . X

convolution (2a) 3 x 3/1 56 x 48 x 96 55K layer-wise fashion, from the last fully-connected layer

convolution (2b) 3 x 3/1 56 x 48 x 96 83K to the previous locally-connected and convolutional

max pool 2% 2/2 28 x 24 x 96

convolution (3a) 3x3/1 28 x 24 x 192 166K layers

convolution (3b) 3x3/1 28x24x192 | 332K o When a layer is sparsified, a new model is re-trained

max pool 2% 2/2 14 x 12 x 192 o i .

convolution (4a) 3x3/1 14 x 12 x 256 443K initialized by Its previous model

convolution (4b) 3x3/1 14x 12 x 256 | 590K o Therefore, a sequence of models with fewer and

max pool 2% 2/2 7 % 6 x 256 ; ;

local connection (5a) 3% 3/1 5 x4 x 256 11.8M fewer connections are trained

local connection (5b) | 3 x 3/1 3 X 2 x 256 3.5M o Finally, the final sparse ConvNet is obtained

full connection (f) 512 786K

Table 1. Baseline ConvNet structures.

Sun'Y, Wang X, Tang X (2016) Sparsifying neural network connections for face recognition. In: Proceedings of the IEEE Conf;
on Computer Vision and Pattern Recognition, pp 4856-4864

0 Zheng et al (2016)

v/ proposed a DCNN based approach for unconstrained face verification
v/ Combine the Vector of Locally Aggregated Descriptor (VLAD) feature encoding with DCNN features

v/ VLAD-encoded DCNN (VLAD-DCNN) features, is that spatial and appearance information are
simultaneously processed to learn an improved discriminative representation

w
4 Triplet Metric Learning,l - i
JTITITTTIIIZZTS g,
! A ~ ..

- pos
'"eSAA o A' ~ §‘
1 A "~ )

Joint Bayesian Metric
Learning

____________

\ Metric Learning

Zheng J, Chen JC, Bodla N, Patel VM,
Chellappa R (2016) Vlad encoded deep
convolutional features for unconstrained  Fig. 1. An overview of the proposed fusion framework to combine the

face verification. global average pooling. fully-connected layer features and VLAD features

In: Pattern Recognition, Intl. Conf. on, < L e S
IEEE, pp 4101-4106 for unconstrained face verification. .



0 DeepVisage (Hasnat et al, 2017)

v’ an efficient framework with 27 convolutional and 1 fully connected layers
v It incorporates residual learning framework
v’ uses normalized features to compute softmax loss

“"1 ResBI

Filt Support
_ Stride |

o M%N\ Pool

Pad

# Filts
# Replications

[,] |
Ay w(ResBl

N D
- | -
[o+]

I-"Q - —“wiResBl

)
w

Figure 1: Niustration of the proposed CNN architecture. CoPr indicates
convolution followed by the PReLU activation function. ResBl is a resid-

ual block which computes output = input + CoPr(CoPr(input)). Hasnat A, Bohn'e J, Gentric S, Chen
# Replication indicates how many times the same block is sequentially L (2017) Deepvisage: Making face
replicated in the CNN model. # Filts denotes the number of feature maps. ~ ¢cognition simple yet with powerful

do_ s generalization skills. arXiv preprint
FN denotes feature normalization. arXiv:170308388 0

0 Gruberetal (2017)

v’ presents initial experiments of an application of deep residual network to face
recognition task

v utilize 50-layer deep neural network ResNet architecture

v The neural network was modified and then fine-tuned for face recognition
purposes

v The experiments of classification of closed and open subset show the great
potential of residual learnina for face recognition
X

weight layer

Formally building block is defined as:
X

identity y=F(z AW;}) + =z,

Figure 2. Residual learning: a building block.

Gruber |, Hlav'a’c M, "Zelezn'y M, Karpov A (2017) Facing face recognition with resnet: Round one. In: Intl. Conf. on Interactive Collaporative
Robotics, Springer, pp 67-74



0 SphereFace (Liu et al, 2017b)

e a deep
hypersphere
embedding
approach

e with angular
softmax
(A-Softmax) as

| SO——

s Training
! 11 ' -
! | Training Conv FC1 A-Softmax o Tahels
i| Faces Layers Layer Loss
1
N L
= Testing v ——
{| Testing Deep Cosine | Angular ||
!| Faces Features | Similarity | Metric ||
\ /

Figure 4: Training and Extracting SphereFace features.

. Layer 4-layer CNN 10-layer CNN 20-layer CNN 36-layer CNN 64-layer CNN
the IOSS funCt'On [3x3,64]x1, 82 [3%3,64]x1,S2 [3x3.64]x1,82
Convlx | [3x3,64]x1,S2 [3x3.64]x1, 82 3x 3,64 - 3x 3,64 p 3 x 3,64 ¥
3 x 3,64 3 x 3,64 3 x 3,64
[3x3, 128]x 1, 52 [3x3, 128]x1, 2 [3x3, 128]x1, §2 [3x3, 128]x1, S2
Conv2x | [3x3,128]x1,S2 3x 3,128 3x 3,128 3x 3,128 3% 3,128
% 1 X2 x4 X 8
3% 3,128 3x%3,128 3 x 3,128 3 x 3,128
_3><3.256]><_l.52 _3x3‘256]x_l‘52 _3x3,256]x_1.52 3x3,256]x1, S2
Conv3.x | [3x3,256]x1,S2 3 x 3,256 3 x 3,256 3 x 3,256 3 x 3,256
5 % X 2 x 4 x 8 P |
3 x 3,256 3 x 3,256 3 x 3,256 3 x 3,256
3x3,512]x1, 82 3x3. 51211, 82 [3x3, 512]x1, S2
Convd.x | [3x3,512]x1,82 | [3x3,512]x1,S2 3 x 3,512 ol 3 x 3,512 2 3 x 3,512 %
3 x 3,512 3 x 3,512 3x 3,512
FC1 512 512 512 512 512

Table 2: Our CNN architectures with different convolutional layers. Conv1.x, Conv2.x and Conv3.x denote convolution units that may contain multiple
convolution layers and residual units are shown in double-column brackets. E.g., [3x3, 64] x4 denotes 4 cascaded convolution layers with 64 filters of size
3x3, and S2 denotes stride 2. FC1 is the fully connected layer.

Liu W, Wen Y, Yu Z, Li M, Raj B, Song L (2017b) Sphereface: Deep hypersphere embedding for face recognition. arXiv preprint
arXiv:170408063 41

0 DCRL (Wang et al, 2017c)

v’ proposed a Discriminative Covariance oriented Representation Learning
(DCRL) framework for face recognition with image sets

v by learning deep representations which can match the subsequent image

set modeling and classificationssmss— = [ o
min;A,, X LEM(C.—,L‘]) Softma; re:ression
o % 1] - v
Meatrix logarithm operator
G G g G
Wang W, Wang R, Shan S, Chen X
(2017c) Discriminative covariance $a(%) ®e(%) i bo(%)
oriented rep_rgsent?tlc_)n learning for sl o) -- J:b-:L__) bo() 6o0)
face recognition with image -
sets. In: Proceedings of the IEEE f

Conf. on Computer Vision and
Pattern Recognition, pp 5599-5608

- \ Input image sets
e ~ i
B -
” 7

(a) Graph Embedding scheme (b) Softmax Regression scheme

Figure 1: Conceptual illustration. The basic idea is to find a shared mapping ¢ (-) which projects the images of different sets
into a target feature space such that the set model (i.e., set covariance matrix) calculated in this target space has maximum
discriminative ability. More precisely, since ¢g(-) is a CNN which is parameterized by ©, we seek to find a value of ©
to meet such optimization objective. Note that the green and blue arrows denote feeding forward and back propagation
respectively. (a) Given a pair of image sets (X;, X;). the Graph Embedding scheme optimizes © through minimizing the
Log-Euclidean metric (LEM) weighted by an affinity matrix A , whose entries correspond to pairs of set covariance matrices
calculated in the target image feature space. (b) For the Softmax Regression scheme, we seek to find a © which éiures that
log-covariance vectors corresponding to different sets can be classified by a softmax regression machine.



0 Doppelganger mining(Smirnov et al, 2017)

v/ a method to learn better face representations

v/ The main idea:
o to maintain a list with the most similar identities for each identity in the training set

o This list is used to generate better mini-batches by sampling pairs of similar-looking identities
("doppelgangers”) together

Smirnov E, Melnikov A, Novoselov S, Luckyanets E,
Lavrentyeva G (2017) Doppelganger mining for face
representation learning. In: Proceedings of IEEE

Conf. on Computer Vision and Pattern Recognition,  Figure 1. Examples of the doppelganger identities from the Low-
Rp 19181528 shot face recogntion challenge dataset (base set) [9]. Identities at
the left and their corresponding doppelgangers at the right.

0 NR-Network(Ding et al, 2017)

v/ a model for noise-robust deep feature representation which can
increase inter-personal variations and reduce intra-personal variations
at the same time

v Part1:

O contains two convolutional layers
O each layer is followed by a max pooling layer, respectively

v/ part 2:

O isan inc_eﬁtiqn module which contains one max pooling layer and four convolutional
layers with different kernel sizes.

O the outputs of the three convolutional layers are connected together by a concat
layer (Conc1)

v/ part 3:
O with a max pooling layer and a convolutional layer is inserted l
O Following the inception is also a concat layer (Conc2)

v Part 4:

o In order to extract both the low-level and high-level features hierarchically, the final
Lu(ljl;cl1 connected layer is connected to the outputs of all the three parts with 256
idden neurons

O The output of this fully connected layer serves as the face representation
O Followed by the final inner product layer are the normalization and dropout
Ding Y, Cheng Y, Cheng X, Li B, You X, Yuan X (2017) Noise-resistant network: a deep-learning

method for face recognition under noise. EURASIP Journal on Image and Video Processing
2017(1):43

| Comv321 | | Comvi22 | | Conv323 |

Fig. 2 Architecture of the NR-Network
.




0 Parketal (2017)
v/ a method for learning feature representations
v/ which directly determine whether two input images are identical
v’ using a single model based on DCNN and residual learning

Siamese Network a L2(a)
El o o
Shared i Feature
Weights Normalization & 69 =" DCNN
L Concatenation
ENy o &

., 03
--------------------------------

L2(a")

, :L2(a-a)) ’ :12(a’ — @)

Figure 1. An overall model structure of the proposed method. The a and @’ denote two extracted features from the siamese network. The

L2(a) denotes that the vector @ is L2-normalized.

Park S, Yu J, Jeon M (2017) Learning feature representation for face verification. In: Advanced Video and Signal Based

Surveillance, Intl. Conf. on, IEEE, pp 1-6
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| Batch Normalization |
¥

| Activation ]
¥

| Residual Function | |

Conv Laver ]
Y

| Batch NOI}nalization |

e L Activation ]
Name | #Filters / Filter Size / Stride | Output Size [ #Params | L [ Conv Lave_r ]
Convl 1ES%S%LF1 96x96x32 1.6K xl+1
Pooll L12%212 48x48x32 -
2 Z 2 2 i 9 of i sarnine: (Ri o i
Residual Block1 ?;::::;ﬁ: jgiig:g; 26§ Flgure.: 2. (Left) Resndu.al Learning; (Right) ‘Stru.uure.of Re51d.ual
s = unction. output is sum of a results of ¢ ty ma g
— St e - Functi ‘n Th‘e l'lpll‘l m f a results of an identity mapping
—— 573%x3%647 1 24x24x64 | 368k | and residual function for the input.
173x3%128F1 24x24x128 148K
Pool3 LI2%2/12 12x12x 128 -
Feature Concatenation - 24x24x128 -
; 3/3%x3x128/1 24x24x128 442K
Residual Block3
Peae 2an ] Epeaas | IS We express the residual unit in a general form:
Pool4 1/2%x2/2 12x12x256 -
) 3/3%x3%256/1 12x 12x256 1769K X =} 11,%
sidual Block 1+1 = h(xp) + F(x;, W7) (1
. 1/3x3x384/ 1 12x12x384 | 885K N
Pool5 1/2x2/2 6x6x384 - Here X;, X;+1, and W, are an input, output, and set of
Global Avg Pool 1/6x6/1 Ix1x384 £ weights of /-th layer. The function A(x;) performs an iden-
[]jc-l- - z 0.768K tity mapping with (x;) = x; and F(x;. W;) denotes a resid-
o - = " ual function, which is composed of Batch Normalization
‘ Total \ = | = | 4037K |

layers [14], activation functions, and convolution layers.

Table 1. The detailed architecture of the proposed model. The bold indicates layers in the siamese network. Therefore, we compute the
number of parameters in the bold layers twice.
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Hsieh HL, HsuW, Chen YY (2017) Multi-task learning for face

H identification and attribute estimation. In: Acoustics, Speech and Signal
D HSIeh et al (201 7) Processing, Intl. Conf. on, IEEE, pp 2981-2985

v’ proposed a multi-task learning framework

v’ incorporate identity and high-level human attributes (gender, age)
v make use of multiple loss function by multi-task learning

v’ learn more semantic and discriminative face representations

v these ideas decrease the needed size of dataset and reduce the computation
efforts

v’ In general, multi-task learning seek to improve the performance of multiple

i 7 Task 1
=&
fEHI H: FHEE
2 (& %agg - Task 2
B L el 0 B
- N - N - N - N
[—
e
Task 3

Fig. 2. Illustration of our CNN architecture. The shared features would be the input of multiple loss layers to classify human
attributes and human identity. By utilizing the regularized multiple loss function, we can learn better representatios for face
identification and attribute detection.

0 Chen et al (2016a)

v’ used a joint Bayesian metric learning to assess the similarity between two face
representations

- - e e -

oD%\

v/ For training:
o first perform face and landmark
detection on the CASIA-WebFace,
and the IJB-A datasets to localize

pos

>
=3
S
>,
/
P ’
’ ’
’
&9
®
L ]
e g Tt ki

an d d | ign ea Ch fa ce. N > DCNN model Joint Bayesian Metric Learning
o Next, train our DCNN on the L
CASIA-WebFace /’Testing ____________ V;, b T ~ s

o derive the joint Bayesian metric
using the training sets of the 1JB-A
dataset and the DCNN features.

o For testing: ' Sinclosiy

o Then, given a pair of test image \ /
sets

O compute the simila rity score Figure 1. An overview of the proposed DCNN approach for face verification.
based on their DCNN features and Chen JC, Patel VM, Chellappa R (2016a) Unconstrained face verification using

the learned metric. deep cnn features. In: Applications of Computer Vision, Winter Conf. on, IEEE,
pp 1-9 48

N ' .
ot 'E%\ = ==

DCNN model

,.._._-._._....-._-
o s e i’ O




0 FV-DCNN (Chen et al, 2016b)

v/ combine the deeply learned feature by CNN and Fisher vector representation
v/ to generate Fisher vector encoded DCNN features

¢/ which can capture both local and global variations
v/ Training:
o Each training image is first passed e
through a pre-trained DCNN model to
extract the convolutional features
o Then, learn the Gaussian mixture
model over them and perform FV
encoding over these local
convolutional features which have
already encoded the rich face feature
information
o Finally, learn the metric
v Testing:
o extract the DCNN features Fig. 1. An overview of the proposed FV-DCNN representation for
o use the learned GMM to perform FV  unconstrained face verification.

feature encading Chen JC, Zh J, Patel VM, Chell R (2016b) Fish i ded d
. en eng ate ellappa isher vector encoded deep
2 apply the I_eamed metric to compute convolutional features for unconstrained face verification. In: Image Processmg
the similarity scores Intl. Conf. on, IEEE, pp 2981-2985

~

Metric Learning

0 NormFace (Wang et al, 2017a)

v Propose two strategies for training . H_DDq_m_, i
using normalized features ool ] i

aligned

O use a modification of the softmax loss to image N normalize TMET Fassificabion
pptimize cosine similarity instead of product  holding
inner-product same
. . 5 i Testing: - . f Sfeaturel i Identity

O is a reformulation of metric learning by ' = i~ - -
introducing an agent vector for each class identity

Figure 1: Pipeline of face verification model training and
testing using a classification loss function. Previous works
did not use the normalization after feature extraction dur-
ing training. But in the testing phase, all methods used a
normalized similarity, e.g. cosine, to compare two features.

Wang F, Xiang X, Cheng J, Yuille AL (2017a) Normface: / 2 hypersphere embedding for face verification. arXiv preprint arXiv:170406369



* Multi-CNN

® Some models use more than one CNN to extract features and concatenate
them as the final features for face recognition

® They usually require additional training data to train each CNN

® |t is necessary to explore some particular modalities that can contribute to
enhance performance

* The use of the above strategies
requires significant efforts in terms of
data preparation or selection and
computing resources .

Table 2 Overview of deep learning methods based on Multi-CNN

Algorithm

Description/Remark

DeeplID (Sun et al, 2014b)

DeepID2 (Sun et al, 2014a)

DeepID2+ (Sun et al, 2015b)
DeepID3 (Sun et al, 2015a)

Kang et al (2017)

SIAMESE (Wang et al, 2014)

FR+FCN (Zhu et al, 2014b)

Baidu (Liu et al, 2015)

MFRS (Zhou et al, 2015)
Xiong et al (2017)

Bodla et al (2017)

Lu et al (2017b)

Each CNN takes a face region as input; Features are concatenated from them; All
identities are classified simultaneously

An ensemble of 25 CNNs trained on different local patches; Apply Joint Bayesian to
obtain robust embedding space; Use identification and verification signals as supervision
Based on DeeplD2, further combine verification and identification loss

Joint identification-verification supervision added in final and a few intermediate layers
Based on Multi-scale Convolution Layer Blocks (MCLBs); Stack MCLBs to present
multi-scale abstraction; Use a deep ensemble; Extract two types of features from each
DCNN and combine them to do FR

Trained on different parts and scales of a face using a layer-wise training method; All face
representations are concatenated as feature

Contain five CNNs; Each takes a pair of whole faces or facial components (forehead, eye,
nose and mouth) as input; Five CNNs are concatenated by fully connected layer to learn
feature representation; Use a logistic regression layer to predict whether the two face
images belong to the same identity

A two-stage approach combining multi-path deep CNN and deep metric learning; Extract
overlapped image patches centered at different landmarks on face region; Concatenates
representation together forming a high dimensional feature

4 face regions are cropped for feature extraction and PCA for feature reduction

Explore complementarity of 2 DCNNs by training with two different large datasets

A deep heterogeneous feature fusion network for template-based face recognition

2 CNNs; Concatenate features of each CNN after PCA reduction
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0 SIAMESE (Wang et al, 2014)

v’ use Siamese Network based on normal convolutional neural network
v trained on different parts and scales of faces using a layer-wise training method
v all face representations are concatenated as

the feature oureun

3

FEATURE
COMPARISON [~ B

CLASSIFIER CLASSIFIER

Wang W, Yang J, Xiao J, Li S, Zhou D (2014)
Face recognition based on deep learning. In:
Intl. Conf. on Human Centered Computing,
Springer, pp 812-820

INPUT SANPLE INPUT SEMPLE
A B

Fig. 1. Siamese Network

Fig.1 is Siamese Network of Probability, which supports the module of
v=f(X,.X,). X,.X, is a vector of the actual problem, y is their similar prob-

ability. Using Siamese Network Module can solve multiple sample input and classifi-
cation problem.

0 FR+FCN (Zhu et al, 2014b)

v’ can directly recover canonical views of
2D face images using multiple CNNs

v It first selects canonical view faces by
a facial measurement for frontal view
based face rank

v/ And recovers faces using a 4-layer
CNN

Logistic
Regression

v’ Then facial component-based CNN is
used to train with the recovery faces

Full
Connection

Convolutions T

Figure 7: Architecture of the facial component-based network. The network contains five CNNs, each of
which takes a pair of whole faces or facial components as input. The sizes of the whole face, forehead, eye,
nose, and mouth are 64 x 64, 22 x 64, 24 x 64, 28 x 30, and 20 x 56, respectively. First, each CNN
learns the joint representation of the pairs of input. A logistic regression layer then concatenates all the joint
representations as features to predict whether the two face images belong to the same identity.

Zhu Z, Luo P, Wang X, Tang X (2014b) Recover canonical-view faces in the wild with deep neural networks. arXiv preprint
arXiv:14043543 Zou W, Zhu S, Yu K 54



0 MFRS (Zhou et al,2015)

v four face regions are cropped for the representation extraction

Training Phase
Soft Multi-class
> Classification

Testing Phase
PCA —> L2 Distance

Raw Image Cropped Patches Nalive CNNs  Face Representation

Figure 3. Overview of Megvii Face Recognition System. We
design a simple 10 layers deep convolutional neural network for
recognition. Four face regions are cropped for representation ex-
traction. We train our networks on the MFC database under the
traditional multi-class classification framework. In testing phase,
a PCA model is applied for feature reduction, and a simple L2
norm is used for measuring the pair of testing faces.

[ DeeplD series methods

v/ DeeplD, DeeplD2, DeeplD2+, DeeplD3

v/ extract robust features of different local face patches

v/ Combine them together for recognition

Zhou E, Cao Z, Yin Q (2015) Naive-deep
face recognition: Touching the limit of Ifw
benchmark or not? arXiv preprint
arXiv:150104690

55

¢/ Identification and/or verification signals are adopted for supervision
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0 DeeplD (Deep hidden Identity features)

v/ extract from 60 face patches with ten regions, three scales,

and RGB or gray channels

v/ form complementary and over-complete representations

Figure 3. Top: ten face regions of medium scales. The five regions
in the top left are global regions taken from the weakly aligned
faces, the other five in the top right are local regions centered
around the five facial landmarks (two eye centers, nose tip, and two
mouse corners). Bottom: three scales of two particular patches.

Deep ConvNets:

v/ contain 4 convolutional layers (with max-pooling) to

extract features hierarchically
followed by the fully-connected DeeplD layer

AN NN

the softmax output layer indicating identity classes
The last hidden layer is fully connected to both the 3th
and 4th convolutional layers (after maxpooling) such that

it sees multi-scale features (features in the 4th

convolutional layer are more global than those in the 3th

Soft-max
layer
Convolutional Convolutional 1§

)'Convolutlonal
layer 1 Convolutional

@ : layer 2

40
20 Max- poolmg
Input layer layer 1

Max- poolmg

40 60
Max-pooling layer 3

layer 2

Defy) hldden
entity
features n

(DeeplD)

Figure 2. ConvNet structure. The length, width, and height of
each cuboid denotes the map number and the dimension of each
map for all input, convolutional, and max-pooling layers. The
inside small cuboids and squares denote the 3D convolution kernel
sizes and the 2D pooling region sizes of convolutional and max-
pooling layers, respectively. Neuron numbers of the last two fully-
connected layers are marked beside each layer.

Multiple ConvNets

n~= 10000 n = 10000
Q0O -+ OO dentityclasses QO -+ OO
Deep hidden  ocee®omeeoe e X
|dent|ty features ! O. .o O 160 cen O oo O}{ 160
(DeeplD) g -
0@ . . Feature extracting Lot
e .o e xecting@. . - @)
555 Feature extractmg .
240/© 1 O laver 3 ®--- ® D --- @ ©)360
144000 _‘ 00 Featurgygtractmg‘OO = . @@ 1920
eature extractin,
3920/@@ - -- d layer 1 bO ' O0/s040

Face patches [] a ‘ ﬂ

Figure 1. An illustration of the feature extraction process. Arrows
indicate forward propagation directions. The number of neurons in
each layer of the multiple deep ConvNets are labeled beside each
layer. The DeeplD features are taken from the last hidden layer
of each ConvNet, and predict a large number of identity classes.
Feature numbers continue to reduce along the feature extraction
cascade till the DeeplD layer.

Sun Y, Wang X, Tang X (2014b) Deep learning face representation from
predicting 10,000 classes. In: Proceedings of the IEEE Conf. on Computer
Vision and Pattern Recognition, pp 1891-1898

output
1

srer f o

fully-connected layer

()() 4800
;/(‘

locally-connected layer

input layer
640X60
groupn

group 2

group 1 group n-1

Figure 4. The structure of the neural network used for face
verification. The layer type and dimension are labeled beside each
layer. The solid neurons form a subnetwork.

The input features: DeeplD
o divided into 60 groups

o each contains 640 features extracted from a particular
patch pair with a particular ConvNet

o Features in the same group are highly correlated
Neurons in the locally-connected layer only connect to a

single group of features to learn their local relations and
reduce the feature dimension at the same time

The second hidden layer is fully-connected to the first
hidden layer to learn global relations

The single output neuron is fully connected to the second
hidden layer; Output indicates face similarities. 58



0 DeeplD2 (Deep ldentification-verification features)

e Take similar structures as in DeeplD
e Get a 160-dimensional DeeplD2 feature vector at its DeeplD2 layer

e The DeeplD2 layer to be learned are fully-connected to both the 3rd and 4th
convolutional layers

e However, it use identification and verification signals as supervision

Convolutional )
layer 1 Convolutional

Convolutional

layer 3 A(At:::::,:::""::;, :
‘:' - A1 . ‘ ,',":""’ e
gl :

N

7 A60
60 _,.~~’ DeeplD2
20 40 B T Maodoling Lo 7 iarer
Max-poolin Max-pooling layer 3 80
la Bar 1 ‘ layer 2 Convolutional
Input layer Y/

layer 4

Figure 1: The ConvNet structure for DeepID?2 feature extraction.

Sun'Y, Chen Y,Wang X, Tang X (2014a) Deep learning face representation by joint identification-verification. In: Advances in neurakg
information processing systems, pp 1988-1996

0 DeeplD2+ T 'y
FC-4
e Inherited from DeeplD2 00000 . (00000

A\ » Conv-4

Ve Id
e However, make three improvements: [i ‘ 3
’ 00000 c: 00000
¢/ First, DeeplD2+ nets are larger § e o A _Llconv3
o with 128 feature maps in each of the 4 | 00000
convolutional layers o 0000 2 (00000 b
onv- 1
o The final c}‘eatu;e2 rdepresentation is also AL Ve I 00000
increased to 5 imensions ber— —
00000 . 00000
¢/ Second, our training data is enlarged BENSE

o trained with around 290, 000 face images
from 12, 000 identities

o DeeplD2: 160, 000 images from 8, 000
identities

¢/ Third, enhance the supervision :

o connect a 512-dimensional fully-connected ~ Figure 2: DeepID2+ net and supervisory signals. Conv-n

layer to each of the four convolutional layers deneotes the n-th convolutional layer (with max-pooling).

o supervise these 4 fully-connected layers with FC-n denotes the n-th fully connected layer. Id and

the identification-verification supervisory Ve denote the identification and verification supervisory

signals simultaneously signals. Blue arrows denote forward-propagation. Yellow

Sun Y, Wang X, Tang X (2015b) Deeply leamed face representations are ~ AITOWSs denote supervisory signals. Nets in the left and right

sparse, selective, and robust. In: Proceedings of the IEEE Conf. on are the same DeepID2+ net with different input fages.
Computer Vision and Pattern Recognition, pp 2892—2900




Supervisory signals Supervisory signals
0 DeeplD3 =-*‘..<: ‘-".«:; :
Local-connection 10 Full-connection 4

. . .. 3
e inherits a few characteristics of the [[supervsry signats |
DeeplD2+ net

. a Pooling 4 Full- 4
v/ unshared neural weights in the last few feature (_rooimes [ rucomectons )
extraction layers

1T
v/ the way of adding supervisory signals to early {d
layers o Supervisory signals [ Pooling 3 m Full-connection 3 ]
® Deep|D3 net |S S|gn|ﬂcant|y deeper [ Pooling 3 m Full-connection 3 ] Inception 7

¢/ with 10 to 15 non-linear feature extraction layers @E
v/ DeeplD2+:5

Inception 9

Convolution 5 yl Supervisory signals Inception § . Supervisory signals

L

® propose two DeeplD3 net architectures

[ Pooling 2 ):>[ Fu"'COﬂT;.ECIiOHZ ] [ Pooling 2 m Full—v_unn;'dnunz ]
v/ DeeplD3 net1 -~ -

Convolution 4

v/ DeeplD3 net2
. . ' : - ' . t
e The depth of DeeplD3 net is due to stacking A Sy |

renauéﬂpé%&?r?g\/cl);l;tel?nllnceptlon |ayerS before ( Pooling 1 b[ Full-conn;ctionl ] [ Pooling 1 1:>[ Ful'-con:‘e'ctnonl ]

e Continuous convolution/inception helps to

Convolution 2

. . - 11
form features with larger receptive fields
and more complex nonlinearity while 3

Input face image

Sun'Y, Liang D, Wang X, Tang X (2015a) Deepid3: Face recognition DeeplD3 netl DeeplD3 net2
with very deep neural networks. arXiv preprint arXiv:150200873

restricting the number of parameters

D HU et al (201 73) Hu G, Hua Y, Yuan Y, Zhang Z, Lu Z, Mukherjee SS,

v introduced facial attribute feature (FAF) into face recognition Hospedales TM, Robertson NM, Yang Y (2017a)
Attribute-enhanced face recognition with neural tensor

o o ) ) fusion networks. In: Proceedings of IEEE Conf. on

v/ to enhance face recognition performance in various challenging scenarios. Computer Vision and Pattern Recognition, pp 3744-3753

v/ and fused it with face recognition features (FRF)

[ vy ] Prediction
N

Thin eyebrow
Big nose & y©

[ (UPx) & (0P A ] Fused Feature
White -
Black hair|
- Big eye Flattened . = GITNN
in eyebrow i
Bignose - o Face Recognition Feature: x
' ' [ @®9)equ®) ) o Facial Attribute Feature:

attribute image FRF (0.7) FAF(0.84) fusion (0.89)

Kronecker Product
Figure 1: A sample attribute list is given (col.1) which per-
tains to the images of the same individual at different poses

(col.2). While the similarity scores for each dimension vary AU(m 1 u®

in the face recognition feature (FRF) set (col.3), the face at- L

tribute feature (FAF) set (col.4) remains very similar. The x{ 7'

fused features (col.5) are more similar and a higher similar-

ity score (0.89) is achieved. Figure 2: Gated two-stream neural network to implement

low-rank tensor-based fusion. The architecture computes
Eq. (7). with the Tucker decomposition in Eq. (4). The
network is identity-supervised at train time, and feature in

the fusion layer used as representation for verification. 62



v/ Integration with CNNs for FR: architecture

= LeanFace
o use a large number of convolutional layers at early stage to capture the subtle low level and
mid-level information
o activation function is maxout
o Joint supervision of softmax loss and center loss is used for training
= AttNet
o To detect facial attributes, uses the architecture of Lighten CNN [50] to represent a face.
* Once trained, the features extracted from the penultimate fully-connected layers of LeanFace (256D)
and AttNet are extracted as x and z, and input to GTNN for fusion and then face recognition.

Center
Loss

stage1 stage2 stagES sta§e4 s:rg_:e5

Figure 3: LeanFace. ‘C’isa group of convolutional layers. Stage 1: 64 @ 5 x 5 (64 feature maps are sliced to two groups of 32 ones,

which are fed into maxout function.) ; Stage 2: 64 @ 3 x 3,64 @ 3 x 3, 128 @ 3 x 3, 128 @ 3 x 3; Stage 3: 196 @ 3 x 3,196 @ 3 x 3,

256 @ 3 x 3,256 @ 3 x 3,320 @ 3 x 3,320 @ 3 x 3; Stage 4: 512 @ 3 x 3,512 @3 x 3,512 @ 3 x 3,512 @ 3 x 3; Stage 5: 640 @

5 x 5,640@ 5 x 5. ‘P’ stands for 2 x 2 max pooling. The strides for the convolutional and pooling layers are 1 and 2, respectively. ‘FC’ 63
is a fully-connected layer of 256D.

Output layer

0 Kangetal (2017)

v’ designed a face recognition system based
on Multi-scale Convolution Layer Blocks
(MCLBSs)

v It stacks MCLBs to present multi-scale
abstraction

v and uses a deep ensemble for it.

v’ Two types of features, low dimensional but
discriminative feature and high-level
abstracted feature, are extracted from each
deep CNN

v/ and combined together for FR

Figure 1: The multi-scale convolution layer block consists
of 1 x 1 convolution, 3 x 3 convolution, 5 x 5 convolution,
and 3 x 3 max pooling layers. The function of 1 x 1 convo-
lution is the dimension reduction: the 3 x 3 and 5 x 5 con-

Kang BN, Kim Y, Kim D (2017) Deep convolutional neural network using triplets of . s . .
& (2017) Deep i volutions process at different scales to achieve multi-scale

faces, deep ensemble, and score-level fusion for face recognition. In: Proceedings of i . < T
IEEE Conf. on Computer Vision and Pattern Recognition Workshops, pp 109-116 feature abstraction: the 3 x 3 max pooling is useg,to be able
to learn translation-invariant features.



0 Xiong et al (2017)

v/ Inspired by transfer learning v/ proposed a unified learning framework,
e, transferred deep feature fusion, to explore
l‘lL . the complementarity of two distinct DCNNs

P ET‘E w v/ by training them with two different large
\ —l % datasets.

v/ When feature extraction is finished, the
model will fuse the two types of deep
features and adopt specific linear SVMs for
classification.

Feature Fusion SVM oss

= Il ¢#
= o2 i =
s i %

l Wi } Xiong L, Karlekar J, Zhao J, Feng J,

Pranata S, Shen S (2017) A good practice
towards top performance of face
Fig. 2: Framework overview. Our learning framework consists three components: Deep feature learning module locates middle component, recognition: Transferred deep feature

Template-based unconstrained face recognition is included in upper and lower components. Training procedures are illustrated with blue fusion. arXiv preprint arXiv:176800438
blocks, two-stage fusion is depicted in green blocks. Best viewed in color.
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0 Bodla et al (2017)

v’ proposed a deep heterogeneous fusion
network that fuses two deep features
generated by different DCNNs

v for template-based face recognition by
exploiting the complementary information

Raw Features

Concatenation [
Bl Output of Basic Block

S Y
k Fully Connected +

presented in features "M
B
o«

Loss

Function

(b) Deep fusion network
Figure 2. The figure on top shows our basic building block of
Bodla N, Zheng J, Xu H, Chen IC, Castillo C, Chellappa R (2017) deep fusion network with % hidden layers. The bottom figure is

Deep heterogeneous feature fusion for template-based face recognition. In: the overview of our deep fusion network that fuses two DCNN

Applications of Computer Vision, Winter Conf. on, IEEE, pp 586-595 features. The boundaries shown in dotted lines are the two bagjg
blocks corresponding to deep networks I [28] and II [29].



% Variants of CNN

Table 3 Overview on some variants of CNN

Algorithm

Description/Remark

BCNN (Lin et al, 2015)
Chowdhury et al (2015)
Chowdhury et al (2016)

Pyramid CNN (Fan et al, 2014)

Based on
general CNN,
some variants of
CNN have been
proposed

c-CNN (Xiong et al, 2015)

Li et al (2015a)

Guided-CNN (Fu et al, 2017)
PCANet (Chan et al, 2015)

SPCANet (Tian et al, 2015a)

SRDANet (Tian et al, 2015b)
Weighted-PCANet

(Huang and Yuan, 2015)
MS-PCANet (Tian et al, 2016)
Simén et al (2016)

NAN (Yang et al, 2016)
ABTA (Dong et al, 2017)
Ranjan et al (2016)

SL-DCNN (Chen and Deng, 2016)
LBPNet (Xi et al, 2016)

JFL (Lu et al, 2015)

Chen et al (2015b)

Wu et al (2017a)

Ranjan et al (2016)

To bridge the gap between the texture models and part-based CNN models
Fine-tune a trained base-model of a symmetric BCNN to extract feature
Apply BCNN on 1JB-A dataset

Contain a group of CNNs divided into several levels with different depth and
size, and they share some of the layers

The samples in ¢-CNN are processed with dynamically activated sets of kernels;

Kernels are only sparsely activated when a sample is passed through the network

A tree-structure kernel adaptive CNN; Can heirarchically fuse multiple local
adaptive CNN subnets

Parallel sub-CNN models as guide and learners

PCA is employed to learn multistage filter banks

Stack multiple output features learned through each stage of the CNN as the
input of nonlinear processing layer with hashing method-activation

Use leading eigenvectors from patches in facial image as filter kernels
Combine Linear Regression Classification model and PCANet construction to
extract feature

Multiscaled PCA Network

Fuse CNN and WNNC

Two modules: CNN based feature embedding and neural aggregation

Two modules: attention based neural network, template adaptation module
Employ a multi-task learning (MTL) framework to do multi-purpose task
Weakly-supervised self-learning DCNN

An unsupervised learning; Trainable kernels are replaced by LBP

Stack an unsupervised feature learning method into a deep CNN

An automatic end-to-end FR system: face detection, alignment and verification
ReST is introduced into CNN to do face alignment and recognition
Multi-purpose CNN architecture; Can simultaneously perform variouSBZasks

0 B-CNN (Chowdhury et al, 2016)

v’ B-CNN is originally introduced by Lin
et al (2015)

v applied B-CNN to 1JB-A

v’ consists of two CNNs whose
convolutional-layer outputs are
multiplied (using outer product) at
each location of the image

v’ The resulting bilinear feature is pooled
across the image resulting in an
orderless descriptor for the entire
image.

v’ This vector can be normalized to
provide additional invariances

000000008000§6880

00000000000000Q00000000H00D

i = bilinea:vector
convolutional + pooling layers

Fig. 1.

Image classification using a B-CNN. An image is passed

through CNNs A and B, and their outputs at each location are combined
using the matrix outer product and average pooled to obtain the bilinear
feature representation. This is passed through a linear + softmax layer
to obtain class predictions.

Chowdhury AR, Lin TY, Maji S, Learned-Miller E (2016) One-tomany face
recognition with bilinear cnns. In: Applications of Computer Vision, Winter
Conf. on, IEEE, pp 1-9 68



0 Pyramid CNN (Fan et al, 2014)
v’ presented a structure of

DCNN, using image pixels as I PamioN @
input and multiscale input P ; =
patches. Inlnaal @ﬁ ~
v There are multiple CNNs. LT M Y Y
. : - P o~ rees :
v’ For each CNN, two images are 1) T
fed and the S.IA.MESE network : 1‘-2 - 5 level 1 level 2 level 3 level 4
is used to train it. St « D st sy

() unshared network(s)
v’ The outputs are compared by =
the OUtpUt neurons which Figure 2:  Our Pyramid CNN method. To train an individual network, the “Siamese”™ network is

. used. Two images are fed to the same CNN and the outputs are compared by the output neuron

pred ict whether the two face which predicts whether the two faces have the same identity. The Pyramid CNN consists of several

images have the same levels of networks. These networks have different depths and input sizes, and they share some of
; s the layers. The pyramid is trained in a greedy manner. The first network is trained on part of the
ldentltY- face, and its first layer is fixed. The fixed layer is used to filter and down-sample input to higher

level networks. Higher level networks are trained on the processed images. In this way, the size of

v OUtpUt is a landmark-based the network that is actually trained does not grow as the level increases.
multi-scale feature with a

highly compact characteristic
Fan H, Cao Z, Jiang Y, Yin Q, Doudou C (2014) Learning deep face representation. arXiv preprint arXiv:14032802 69

0 Conditional CNN (Xiong et al, 2015)

v’ c-CNN is a conditional CNN to handle
multimodal face recognition.

tecsncan

.............

>D' 3

:g; ------- L’S Nl
— ~

O |

O

Lr

......

v’ The activations of kernels for each layer
are conditioned on the present
intermediate representation and the l..."'

717 &7

[ R — .

¥

ol |

. } . ’D Maps

v’ Activated kernels define sample-specific Conditional  Conditional  Conditional
adaptive routes revealing distribution of
the underlying modalities.

activation status in lower layers.

Figure 1. Illustration of c-CNN. Each line type stands for one
modality. Each image is passed along with a modality-specific
route indicated by the corresponding colored arrows. Only the ker-
nels along the route are activated and utilized to extract features.
The passing route defines the splitting w.r.t. inherent modalities in
a coarse-to-fine manner: similar modalities, e.g., modality of red
dashed line and blue solid line, may share certain kernels at the
beginning layers.

Xiong C, Zhao X, Tang D, Jayashree K, Yan S, Kim TK (2015) Conditional convolutional neural network for modality-aware face recognition. In:
Proceedings of the IEEE Intl. Conf. on Computer Vision, pp 3667-3675 70



0 Lietal (2015a)

v’ proposed a tree-structured convolutional architecture to deeply integrate the face
representation of local subnetworks

v’ convolutional kernels are dynamically determined according to spatial distribution of
facial landmarks

Convolve

1
1
1
a _{ " : Convolve
-
: \l. X/ 7

1 1 ]
1 1 1
1 1 1
1 ¥ 1 1 ]
i g\ ct - :
1 J 1 1 1
1 ’ & 1 1
— 1 1 =
: mg : G }: 21 ) ct ’ : Convolve :
1 1 1 . v 3 1
i % VA fi 1A _C |
Li'S, Xing J, Niu Z, Shan S, Yan S ] g\. o |dE Cl/'; ez [[&) =5:_> X|—> |
(2015a) Shape driven kernel 1 _T z ' 1 e 1
adaptation in convolutional : ﬁﬁ E . < :/ /7 /‘: :
neural network for robust facial - 4° : J “al cr ek = : -
; 1 4 ] M - 1 1
traits . ' '8 X VLAM ] ! ¥ U
recognition. In: Proceedings of 17N ck cl 1 fa, ! !
1 1 w 1 1 1
the IEEE Conf. on Computer 1 @O_T 1 1 1
Vision : : : :
and Pattern Recognition, pp Normalized Face : Stage 1: Local Kernel : Stage 2: Part : Stage 3: Global : Logistic
222-230 Texture and Shape ' Adaptive Subnetworks " Fusion Subnetworks " Fusion Subnetwork ' Regression

Figure 2. Flowchart of the proposed tree-structured kernel adaptive CNN. Given a normalized face image I and corresponding facial
landmarks S = {vi}f':‘l, multiple local kernel adaptive CNN subnetworks {C}}:’rz‘l are constructed to learn features from multiple local
patches {P,}fv;l The convolved features learned by multiple local subnetworks are then combined as the middle-level representations to
learn high-level features with the fusion subnetworks, i.e. multiple part fusion subnetworks {C? }1N=21 and a global fusion sphnetwork C2.
Finally, a logistic regression layer is used to generate the final prediction y from vectorized high level convolved features X.

0 Guided-CNN (Fu et al, 2017)

v/ a deep-learning based architecture of Guided-CNN
¢/ which can be applied for cross-domain FR and beyond

v/ By utilizing an existing CNN-based face recognition model as a guide, we adapt and learn
a parallel CNN model for dealing with face images with insufficient resolution

v/ the proposed Guided-CNN can be viewed as a deep domain adaptation model for relating
HR and LR face images with recognition guarantees

Guided-CNN

r CNN,
Guide

Downsample }

S (—— Lc
CNN; Total Loss
Fu TC, Chiu WC, Wang YCF (2017) T : L,
Learning guided convolutional €armei
neural networks for LR

cross-resolution face recognition
Fig. 2. The architecture of our proposed Guided-CNN for cross-resolution face recognition. During training, we downsample

the HR images to be the LR inputs of CNIN;. Softmax loss L, is applied for learning the identification information of LR
images and our unique cross-domain loss L, associates the feature representations of LR images to the corresponding HR
ones. In testing phase, we simply input HR/LR to CNN g/CNN/, respectively and calculate the similarities using the cosine
distance of the associated features fp/fr. 72



0 PCANet (Chan

et al, 2015)

v’ combined principle component analysis (PCA) with deep neural networks to

learn kernels

First stage

Input layer

Second stage

Il

y A,W_fll I..ﬂ Ol

sl

W,

A=

1

>
-— >

»at = >

Output layer

Patch-mean removal PCA filters convolution

Fig. 2.

ChanTH, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) Pcanet: A simple deep learning baseline for image classification? IEEE trans on Image

Processing 24(12):5017-5032

Patch-mean removal PCA filters convolution

0 SPCANEet (Tian et al,

2015a)

>

Binary q

« »

& Cc ted image and

mapping block-wise histogram

A detailed block diagram of the proposed (two-stage) PCANet.

73

v a simplified version of CNN, Stacked PCA Neural Network, follows the basic architecture of CNN

v/ Learn filter kernels go through PCA instead of SGD, then perform the nonlinear computation of the

output of convolutional layer by hashing method and pooling the decimal-valued image using
block-wise histogram technique in each stage

v/stack the output of

multiple stages as final
feature

Tian L, Fan C, Ming Y, Jin Y (2015a) Stacked
pca network (spcanet): an effective deep
learning for face recognition. In: Digital

Signal Processing, Intl. Conf. on, IEEE, pp
1039-1043

2™ Convolutional
layer ouztput

The feature output Fm11

Training Stage

Patch

P% &) Patch
S0 | Matrix
The feature output Patch-Based PCA
of SPCANet model Filter Kernels
F=[f.f Input Test X Training
[ 12 2] Image Samples
The Stacked The Feature he Nonlinea The ZM The 1% >
Feature Output Pooling Layer Processing Layer | Convolutional Convolutional
Layer Layer Layer 74

Fig. 1. Tlustration of how the proposed SPCANet train filter kernels and extracts feature.



0 Weighted-PCANet (Huang and Yuan, 2015)

v/ learns features by combining Linear Regression Classification (LRC) model
and PCANet construction,

v/ shares the main construction characteristics with classical CNNs as a
cascaded neural network, including convolution layers and pooling layers

¢/ The advantage of CNNs is taken in the design of weighted-PCANet, such as
the utility of local vision fields

v/ However, the traditional back propagation (BP) algorithms in CNNs are
replaced with a solved optimization problem.

Huang J, Yuan C (2015) Weighted-pcanet for face recognition. In: Intl. Conf. on Neural Information Processing, Springer, pp
246-254 75

0 MS-PCANet (Tian et al, 2016)

v’ contains two convolutional layers to extract features hierarchically

v followed by a nonlinear processing layer by using a simple binary hashing and
feature pooling layer

v It uses PCA to get the prefixed filter kernels

\ /M —veormrear—\ / A A\
Convolutional filter layer \/\( proc::si':lega:’ayT/r*\/\ Pooling layer /< Output Iayerl/"\.
4 /' N VN
2 Layer PCA 2" Convolutional \ Spatial @
filter kernels layer outputs X" Binary D pyramid @
The second 2 hashing ‘ pooling ©  The output of
stage EEESE i = l ! L @  MS-PCANet
= e ——— 7 3
| | g o | relif]
5 . - - ) r @
inary @ :
ﬂ _hashing.. ~ I\ ¢ The output of ® :
The first oo MR 5 Sa_tlgl’/\ . first stage The output of | ®
ok 1* Layer PCA " (pgeanls 0 f : second stage | @
filter kernels 1% Convolutional D pooling 2
u K 'm:D x layer outputs X'
Input
face

Tian L, Fan C, Ming Y (2016) Multiple scales combined

principle component analysis deep learning network for Fig. 1 An illustration of the architecture of our MS-PCANet model.

face recognition. Journal of Electronic Imaging 76
25(2):023,025-023,025



0 SRDANEet (Tian et al, 2015b)

v’ Spectral Regression Discriminant Analysis Network is similar to SPCANet,
but it uses eigenvectors as filter kernels

First Convolution Layer

Second Convolution Layer

Input Layer

Input lmage[l,

@32x32 |@32x32

Lx7x7@32x32

L xTxT7@32x32

Nonlinear

_Processing Laver

L@32x32

Remove Patch-mean SRDA Convolution

SRDA Convolution

Binarization & mapping

Output Layer

Output
Feature

i

Composed Image and»
block-wise histogram

Fig. 1. The detailed layer architecture diagram of the two-stage SRDANet

Tian L, Fan C, Ming Y, Shi J (2015b) Srdanet: an efficient deep learning algorithm for face analysis. In: Intl. Conf. on Intelligent Robotics and

Applications, Springer, pp 499-510

fusion of CNN with some other modules

[ Weighted Nearest Neighbour Classifier (WNNC), Simon et al (2016)

v/ RGB, depth and thermal
captures of the face are
used for training CNNs

for a binary
classification.
v/ The results are then

fused with Histograms

of Gabor Ordinal
Measures (HOGOMs)

Sim“on MO, Corneanu C, Nasrollahi K,
Nikisins O, Escalera S, Sun Y, Li H, Sun Z,
Moeslund TB, Greitans M (2016)

Improved rgb-dt based face recognition.

let Biometrics 5(4):297-303

.
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Figure 1: The block diagram of the proposed system. RGB, Depth and Thermal captures of the face are
used for training modality specific CNNs for deciding if two samples are from the same person,gr not. The

results are fused with a HOGOM trained WNNC and SVM.




Yang J, Ren P, Chen D, Wen F, Li H, Hua G (2016) Neural

D NAN (Ya ng eta I, 20 1 6) ---see VFR aggregation network for video face recognition. arXiv

preprint arXiv:160305474

v’ Neural Aggregation Network

v’ feature embedding module
O A CNN which maps each face frame into a feature

representation e T e L e e L L LT -

¢/ neural aggregation module

1
|
i q° P q'
O composed of two content based attention blocks i —=| Attention —-@—‘
which is driven by a memory storing all the ! :
features extracted from the face video through the ! L

feature embedding module lenesruservrreeTESTETTERT Y

O The output of the first attention block adapts the
second, whose output is adopted as the

CNN

{fi}

aggregated representation of the video faces

O Due to the attention mechanism, this

representation is invariant to the order of the face  Figure 1. The face recognition framework of our method. All

frames input faces {xx} are processed by a feature embedding module
with a CNN, yielding a set of feature representations, {fx. }. These
features are passed to the aggregation module, producing a 128-
dimensional representation r" for the input video faces. This com-
pact representation can then be used for the decision. 4

o Aggregation Module

v/ designed to take benefits from all frames in a video, potentially containing more
discriminative information than a single image

v/ and handle arbitrary video size in an unified form, producing an order invariant
representation

Figure 2. The attention block. It receives a set of feature vectors k
and filters each of them independently by a kernel q, yielding a

set of scalars {e; }. There scalars are then passed to a softmax op-

erator, producing a set of weights {ax }. Finally, the input feature

vectors are fused via Eq.[T}

80



0 ABTA (Dong et al, 2017)

v/ Improved from NAN by combining transfer learning

v/ Attention-Based Template Adaptation also contains two modules

O attention based neural network (feature extractor) to integrate the template features of
various lengths to a single fixed length feature representation, according to the attention

mechanism

O template adaptation module to transfer the knowledge of a hold-out dataset to the test
templates to improve the performance via transfer learning

Pose-Aware VGG-Face Triplet
Alienment ] Feature s Probabilistic
i Extractor Embedding

Attention- Template
—  Based [ Adaptation
A garegation

Fig. 2 Overall procedure. Step 1, align

the faces of similar pose using

their visible landmarks; step 2, extract the features of the aligned faces using
VGG-FACE model; step 3, learn the triplet probabilistic embedding using

the training data; step 4, attention-based feature aggregation using neural
aggregation network; step 5, template adaptation using one-shot-similarity.
Step 1 to step 4 constitute the feature extractor module, and step 5 is the

transfer module.

0 Ranjan et al (2016)

Dong B, An Z, Lin J, Deng W (2017)
Attention-based template adaptation for face
verification. In: Automatic Face & Gesture
Recognition, Intl. Conf. on, IEEE, pp 9418946

¢/ a multi-purpose CNN architecture
¢/ can simultaneously perform multiple tasks:

o face identification and verification

O face detection, landmarks localization, pose estimation, gender recognition, smile detection, and age

estimation

v/ employs a multi-task learning (MTL) framework to regularize the shared

parameters of the network

Ranjan R, Sankaranarayanan S, Castillo CD,
Chellappa R (2016) An all-in-one convolutional
neural network for face analysis. arXiv preprint
arXiv:161100851

8 []
[z}
D, 1
: _
8 Task Specific
: Parameters
L N\
. []
Input Domains 8.’ Shared
Parameters P =
L

Fig. 2: A general multitask learning framework for deep
CNN architecture. The lower layers are shared among all
the tasks and input domains. 82



Besides the supervised CNN, there are also some weakly-supervised or
unsupervised CNN models.
[ SL-DCNN (Chen and Deng, 2016)

¢/ is a weakly-supervised self-learning DCNN for face recognition

0 JFL (Lu et al, 2015)
v/ stacks an unsupervised feature learning method into a DCNN
¢/ to learn a hierarchical feature representation

v/ It uses different feature dictionaries to represent the physical characteristics of various face
regions

¢/ and learns multiple related feature projection matrices for these regions

e Chen B, Deng W (2016) Weakly-supervised deep self-learning for face recognition. In: Multimedia and Expo, Intl. Conf. on, IEEE, pp 1-6
* LuJ, Liong VE, Wang G, Moulin P (2015) Joint feature learning for face recognition. IEEE trans on Information Forensics and Security
10(7):1371-1383 -

0 LBPNet (Xi et al, 2016)
¢/ Local Binary Pattern Network

v/ a simplified deep network with handcrafted filters for unsupervised learning

v/ It keeps the same topology of CNN whereas the trainable kernels are
replaced by LBP

Dense feature
of the image

Xi M, Chen L, Polajnar D, Tong W (2016) Local binary
pattern

network: a deep learning approach for face recognition.

In: Image Processing, Intl. Conf. on, IEEE, pp 3224-3228 1BPs2 2=10 |

Samoingand pojecton

Fig. 1. The deep network part of LBPNet for feature extrac-

tion. 84



Some CNN-based methods are proposed in an end-to-end fashion

[ Chen et al (2015b)

¢/ proposed an automatic end-to-end face verification system with a complete pipeline

E
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Figure 1. An overview of the proposed end-to-end DCNN-based face verification system.

0 Wuetal (2017a)

v/ Inspired by the spatial transformer
v/ introduced a Recursive Spatial Transformer (ReST) module into CNN
¢/ to jointly optimize face alignment and recognition in an end-to-end fashion

¢/ The ReST can align faces to the canonical view in a pro resswe way, which can
be considered as an alignment-free face recognition syste
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Figure 3. Overview of the proposed ReST integrated in a CNN for

alignment-free face recognition.
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Wu W, Kan M, Liu X, Yang Y, Shan S, Chen X (2017a)
Recursive spatial transformer (rest) for
alignment-free face recognition. In: Proceedings of
IEEE Conf. on Computer Vision and Pattern
Recognition, pp 3772-3780
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«» Other CNN Related Issues

0 Phillips (2017)
¢/ did a cross-benchmark assessment of VGGFace for FR
¢/ on eight National Institute of Standards and Technology (NIST) benchmarks

[ Reale et al (2017)

v/ presented a method to remove unnecessary hidden nodes from a deep neural network

¢/ by using the g%_roup lasso penalty (Meier et al, 2008) to select the appropriate number of hidden nodes for
each convolutional and fully connected layer

[ Franc and Cech (2017)
v/ discussed the problem of learning CNNs for FR

v/ from weakIY annotated images assigned with a pair of attribute and identity labels to a set of faces that are
automatically detected from each image

¢/ and proposed a heuristic for assigning the annotations to faces

[l Bansal et al (2017)

v/ tried to explore some issues that are critical to FR, including:
o which dataset is better in training CNN, deeper and wider?
o Is there a need to do face alignment? etc.

87

[ Ferrari et al (2017)

¢/ made an evaluation on AlexNet and VGGFace

v Ejo texplore how the performance of a DCNN is influenced by the characteristics of raw image
ata

o such as bounding box size, alignment, positioning and data source
¢/ draw some interesting conclusions including that:
o image normalization operations are less useful for feature extraction in DCNN
o training and test data are dependent on each other
o performance is affected by data source combinations (images or video frames)

[ Parde et al (2017)
¢/ made an analysis on the nature of the face code in the top level of DCNNs
¢/ It shows that:

o DCNN features retain a surprising amount of information about the original input image

o the tendency to develop a view-dependent code was a characteristic of the identities
rather than the features

o an.image distance from the origin of the DCNNs top-level feature space could be used
to index the quality of an image
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Some deep models were designed to be applicable to real

life scenarios
[ Jiang and Wang (2017)

v/ an effective face detection and recognition
system based on end-to-end deep CNN

v/ composed of two parts

o the detection network: follows the stru
of the faster R-CNN network, which is
further composed of two modules: the

cture

deep fully convolutional network module
for region proposal and the fast R-CNN
detector that uses the proposed regions.

o the recognition network: follows the

structure of the deep CNN based FaceNet

0 Chen et al (2017)

Detection Network Recognition Network

L2
>
LB
| FC Layers L

P * ¢

I RPN, Rol pooling, Classification

> =

‘W

Conv Layers

entire image

Fig. 1. The unified network structure for end-to-end face detection

and recognition.

Jiang W, Wang W (2017) Face detection and recognition for
home service robots with end-to-end deep neural networks.
In: Acoustics, Speech and Signal Processing, Intl. Conf. on,
IEEE, pp 22322236 89

v/ designed a DCNN-based complete pipeline for face verification, which can automatically perform automatic face detection, association and alignment in still

and video faces
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[ VIPLFaceNet (Liu et al, 2017c)

v/ provided an open source deep face recognition SDK based on DCNN for various face
recognition applications.

0 Dam et al (2015)

v/ developed a light weight CNN that can be deployed on regular commodity computers for
real time FR.

91



