Facial Micro-Expression Analysis
on ADOS Videos

Na Zhang



e Facial Expression Analysis has attracted great interest over the past years
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Digital Health Human Machine Interaction Behavior Analysis Video Communication
e Socio-Emotion Interaction e Problems related to performance
difficulties in ASD of
o Communication Disorder :: > o Expressive language

o Emotional Dysregulation
o with rigid and repetitive behaviors

o Social & Emotional adaptive skills

All individuals diagnosed with ASD, experience either one or more aforementioned difficulties, regardless of the
: severity levels of diagnosis :
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Emotions in ASD

e Usually do not show the emotions in a way that normal people would be
able to recognize and understand

e > or their emotional
responses might
sometimes seem
over-reaction

> either they do not
respond emotionally

e Much research that have been embarked around recognizing human
emotions, particularly for autistic children and individuals
e This study focuses on analyzing emotions felt by the persons



Micro- vs. Macro- Expression Macro-expression
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Motivation

e Micro-expression often reflects the true emotions that a person try to hide,
suppress, mask, or conceal
e Especially important in high-risk situations

Lie Detection

Our work:

Analyze facial micro-expressions of participants in ADOS interview videos for autism diagnosis.

Pan, H., Xie, L., Wang, Z., Liu, B., Yang, M. and Tao, J., 2021. Review of micro-expression spotting and recognition in video sequences. Virtual Reality & Intelligent Hardware, 3(1), pp.1-17.



ADOS Video

e Same scenes: 5-7 and 11-14  school, Work, Social Daily Living,
. Difficulties & Emotions Relationships, Plans
e Two Categories

o ASD: 42 videos
o Control: 9+27 videos ASD))
m Raw:9
Horizontal flipping: 9

|
m Change brightness: 9 — K
m Histogram Equalization: 9 it ))

T
o




Pipeline

™ 7 "\ P %
Videos ™ > Pre-Processing N m‘"‘;f:&':g‘s'o“ i Emzn | Classification " Evaluation

‘Locate the

‘Frame Extraction :segments of micro : ; ;
:Face Detection :movements for a ?gg? cp}‘éeg;ur;é):“ ((::::;s gy i
:Face Cropping : 'given video : : g : ; gory :

;[onset, apex, offset]

e e eereeew fCamesesmes 2 M h s hcssssssssssssesss mhchessssssssssssssess 2 e hcecscsccescce=ee=
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Micro-Expression Spotting

e Find the time interval([onset, apex, offset]) at which micro-expression are

detected
o onset: the first frame at which a ME starts
m i.e., changing from the baseline, which is usually the neutral facial expression
o apex: the frame at which the highest intensity of the facial expression is reached
o offset: the last frame at which a ME ends
m i.e., returning back to the neutral facial expression

Happy snw e LR 3
onset apex offset y
Y
Spotted segment

Pan, H., Xie, L., Wang, Z., Liu, B., Yang, M. and Tao, J., 2021. Review of micro-expression spotting and recognition in video sequences. Virtual Reality & Intelligent Hardware, 3(1), pp.1-17.



e SOFTNet: a shallow optical flow three-stream CNN model

o Regression problem P — i
o Predict a score indicating how likely a frame belongs ," Spotting
to a micro-expression L |
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Frames in a video 2% +1

Scores Aggregation: sliding window approach

e Predicted score for frame i: i o N : == Fen;—k na

1 i+k 3ia
%6 =51 st,-,d, for i= Fy+k,....Fena—k
J=t= 2 |.
k = (N + 1) /2 is half the average length of expression ' ]w J L t w 0} m ‘

Thresholding & Peak Detection

e Different input subvideos have different thresholds l Score
e Threshold T: Aggregation

T = S’mean +p X (S‘maz — Smean) (- Nl | Ly |

v
O  Smean: the average predicted score over the given video "y ! I,
@  Smax: the maximum predicted score over the given video .
d  p:atuning parameter in the range of [0, 1] Thresholding &
Peak Detection
e Spotted Intervals: v
o Apeak frame s is spotted by finding a local maxima 3 ! .
o And extends by k frames to obtain the final spotted interval o 1 5 | | 4
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Average Apex Scores of Spotted ME Segments
B Control [ ASD

Average Threshold of Spotted ME Segments
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Samples of Spotted ME

Control

Onset Apex Offset

Corners of the lips are pulled; A wrinkle runs from outer
nose to outer lip;

The eyebrows are raised and curved; Lip is Puckered,;
Eyes are widened

ASD

Lip corner tightened and raised on only one side of the
face; Drooping upper eyelids

Corners of the lips are pulled; A wrinkle runs from outer
nose to outer lip
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Videos } Pre-Processing % 1““'2’::3::;“0"}’ { EFx‘t’:ta:l::n [ { Classification ) Evaluation
Micro-Expression Feature Extraction
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—— | N— ‘7 'M,c,.;.::&r:;slonv ‘ EFX::::::’“ ’ [ Classification ] Evaluation
Classification
e For each scene [5-7, 11-14] e Scene-level fusion
o Binary classification o Top3,5,7

o 10-fold cross-validation

Table 4.7: Performance of our method on different scenes. Accu. - Accuracy.

Swapping 0 0.3 0.5 0.7 1.0
Ratio Accu. FI score | Accu. Fl score l Accu. Fl score | Accu. Fl score | Accu. Fl score

Scene 5 | 0.9482 09421 | 0.9481 0.9421 | 0.9482 0.9482 | 0.9421 0.9421 | 0.9482 0.9421
Scene 6 | 0.8982 0.8857 | 0.8982 0.8857 | 0.8857 0.8730 | 0.8982 0.8857 | 0.8982 0.8857
Scene 7 | 0.9107 0.9027 | 0.8982 0.8887 | 0.8982 0.8887 | 0.9125 0.9030 | 0.8982 0.8887
Scene 11 | 0.9458 0.9435 | 0.9458 0.9435 | 09333 0.9265 | 0.9458 0.9435 | 0.9333 0.9265
Scene 12 | 0.9357 0.9337 | 0.9357 0.9337 | 0.9607 0.9603 | 0.9232 09167 | 0.9232 0.9197
Scene 13 | 0.9446 09433 | 0.9446 09433 | 09446 0.9432 | 09446 09433 | 09446 0.9433
Scene 14 | 0.8917 0.8960 | 0.8917 0.8960 | 0.9042 0913 | 09042 09130 | 09042 0.9130

Top 3 0.9607  0.9590 | 0.9607 0.9590 | 0.9482 0.9463 | 0.9732 0.9730 | 0.9482 0.9421

Top 5 0.9482  0.9463 | 0.9607 0.9590 | 0.9482 0.9421 | 0.9607 0.9603 | 0.9482 0.9421

Top 7 09482 0.9463 | 0.9482 0.9463 | 0.9357 0.9294 | 0.9482 0.9463 | 0.9357 0.9294
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ASD vs. Control

e ASD participants, in high severity level, have more trouble making natural

spontaneous expressions

o are less expressive;
tend to remain expressionless [low spotting threshold]
less smiling
produce looks that are odd or difficult to interpret
sometimes give ambiguous looks
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