

What is the Challenge for Deep Learning in Unconstrained Face Recognition?

Guodong Guo, and Na Zhang

Lane Department of CSEE, West Virginia University, Morgantown, WV, USA

Face Image Partition based on Quality

- Examine the impact of face image quality
 changes
- Partition face images into High, Middle and Low qualities
- Evaluate FR performance across quality variations

Quality Partition on Databases

Recognition Protocol

- Face Identification
 - Iow vs. high; middle vs. high; Iow vs. middle
- Face Verification
 - ✔ All pairs are generated;
 - ✔ low vs. high; middle vs. high

Deep Learning Methods

- Choose 4 representative deep models for evaluation and comparisons
 - ✓ VGGFace (O. M. Parkhi et al, 2015)
 - Light CNN (X. Wu et al, 2015),
 - CenterLoss (Y. Wen et al, 2016)
 - FaceNet (F. Schroff et al, 2015)

Face Recognition Evaluation

Identification

Verificatio

Verification accuracies of different methods under FAR = 0.01 and 0.001, respectively.

DataSet	Model	Low vs. High		Middle vs. High	
		FAR=0.01	0.001	0.01	0.001
IJB-A	VGGFace	0.605	0.367	0.858	0.675
	Light CNN	0.566	0.402	0.905	0.808
	CenterLoss	0.521	0.313	0.859	0.692
	FaceNet	0.257	0.100	0.586	0.330

Discussion

- One of the grand challenges is the significant quality changes between face images in matching
- One promising direction is to further improve the capability in building the relations between face images with large quality gaps