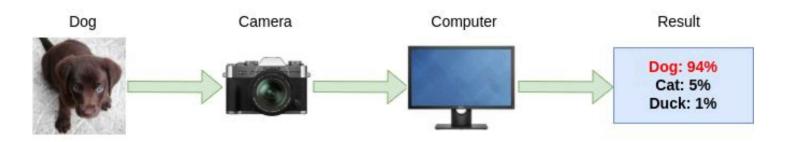
Face Morphing Attacks: MorphGANFormer

Na Zhang

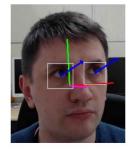
Computer Vision (CV)

- It enables computers and systems to "see", observe and understand the content of the inputs, like images, videos, etc.
 - o "See"
 - acquire information from the real world
 - Observe
 - derive meaningful information
 - Understand
 - take actions or make decisions based on that information



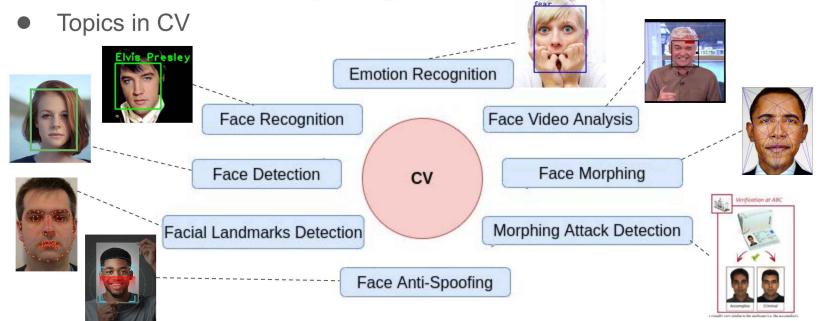
Biometrics

- Distinctive and measurable human characteristics
- Used to label / describe individuals
- It combines CV and knowledge of human physiology and behavior
 - Physiological characteristics
 - related to the shape of the body
 - e.g. fingerprint, palm, face, DNA, hand geometry, iris, retina, odor/scent
 - Behavioral characteristics:
 - related to the pattern of behavior of a person
 - e.g. hand gesture, typing pattern, gaze pattern, voice, gait



Face Biometric

- One of the most expressive and informative biometric traits
- Many studies from the perspectives of various different disciplines
 - ranging from CV and deep learning, to neuroscience and biometrics



Face Analysis

 With the development of computer hardware and imaging technology, face related applications have been applied widely to daily lives

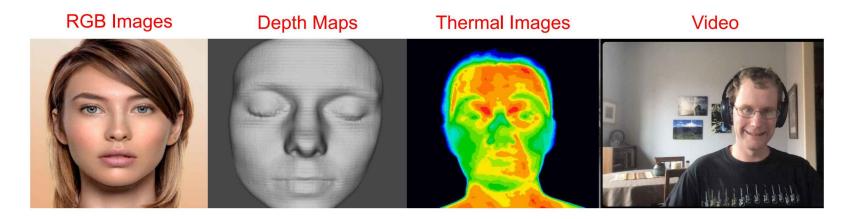
access control

video surveillance

- The demands of face analysis are also growing quickly in recent years
- Automatic face analysis will be one promising tool in many areas in the future

Data Types

• The types of raw data can be:



Morphing Attack – Morphed Faces Generation

Face recognition systems (FRS) have emerged as a popular technique for person identification and verification

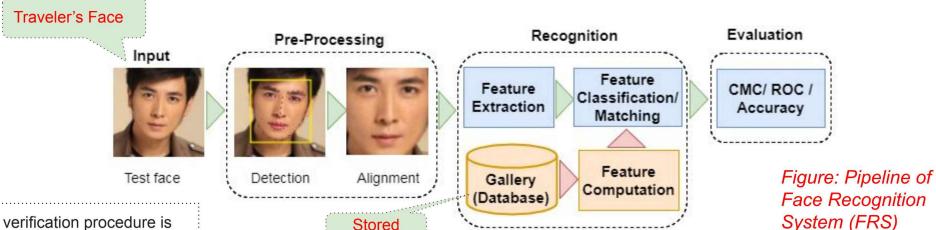
Stored

Reference

e.g., Automatic Border Control System

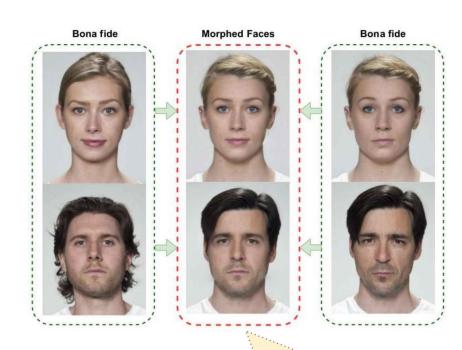
conducted in test stage

- verify a person's identity with his electronic machine-readable travel document (eMRTD)
- by comparing the face image of the traveler with a reference in the database



Vulnerability of FRS

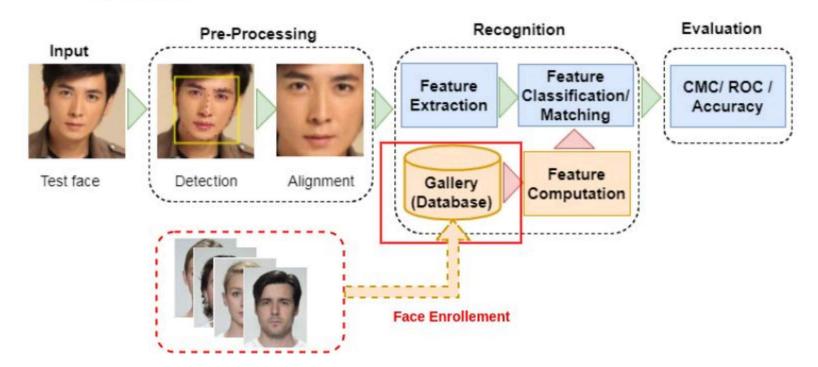
- FRS
 - a popular technique for person identification and verification
- Vulnerable to adversarial attacks
 - although with high accuracy
- Attacks based on morphed faces pose a severe security risk
 - realistic enough to fool human
- Attack vs. Defense



strong visual resemblance to both bona fide faces

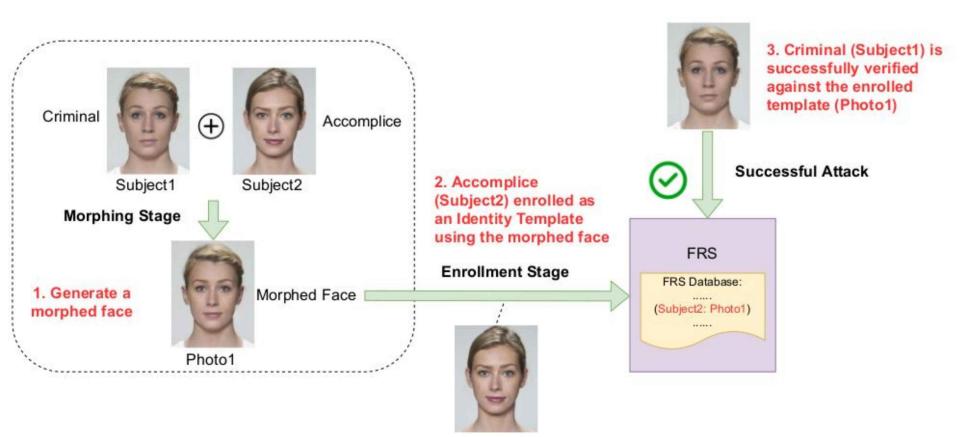
What's Morphing Attack

 Try to interfere with the operation of the FRS by presenting an attack at the time of enrollment



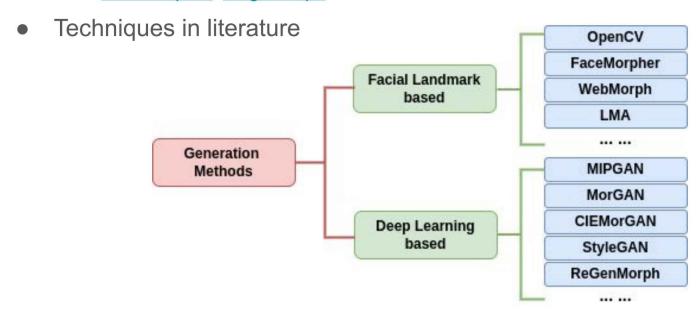
Attack Procedure

The system treats the criminal as the accomplice, and let him /her pass



Existing Morphing Tools/Techniques

- Numerous easy-to-use morphing tools online
 - e.g., <u>MorphThing</u>, <u>3Dthis Face Morph</u>, <u>Face Swap Online</u>, <u>Abrosoft FantaMorph</u>,
 <u>FaceMorpher</u>, <u>MagicMorph</u>



Facial Landmark based

- Works by obtaining landmark points on facial regions
 - e.g., nose, eye, and mouth
- The landmark points obtained from two bona fide faces are warped by moving the pixels to different, more averaged positions
 - e.g. Delaunay triangulation
 - Affine transform
 - Alpha blending
- Post-processing
 - misaligned pixels generating artifacts
 - ghost-like artifacts

Delaunay triangulation

Step 1: Get Facial Landmarks

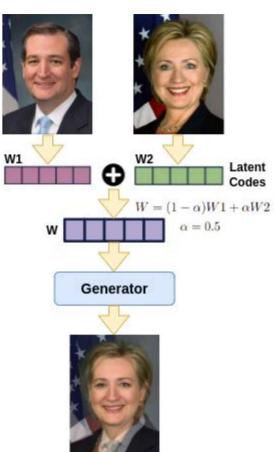
Step 2: Delaunay Triangulation

Step 3: Warping and Blending

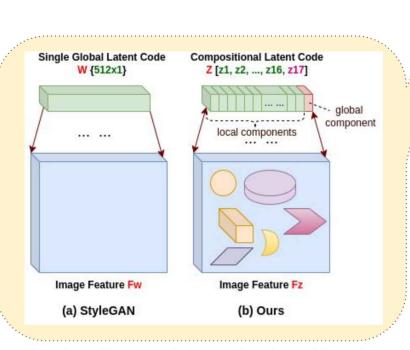
Deep Learning based

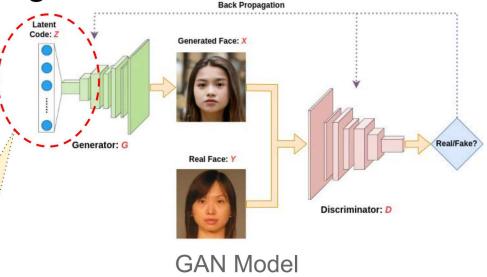
- Most are based on Generative Adversarial Networks (GAN)
- Most adopt CNN as basic architecture
- Works by embedding the images in the intermediate latent space
 - e.g. StyleGAN
 - Linear combination
 - Synthesize using Generator
- Post-processing if needed
 - Synthetic-like generation artifacts

StyleGAN

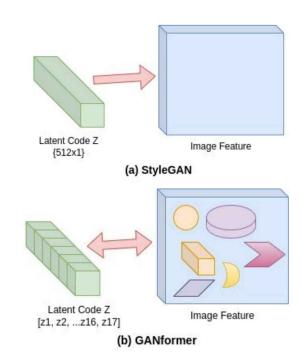


Transformer based Morphing Attack

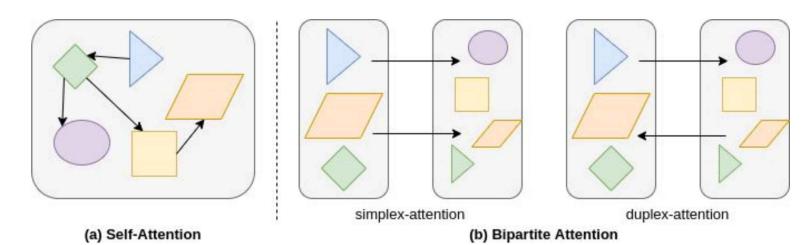




- Generative Adversarial Transformer (GANformer) [1]
- StyleGAN
 - Monolithic latent space
 - o Single global style latent code
 - Modulate whole scene uniformly
 - In one direction
- GANformer
 - Compositional latent space
 - Multiple local style latent components
 - Impact different regions in the image
 - Spatially finer control
 - In both directions



Bipartite Transformer



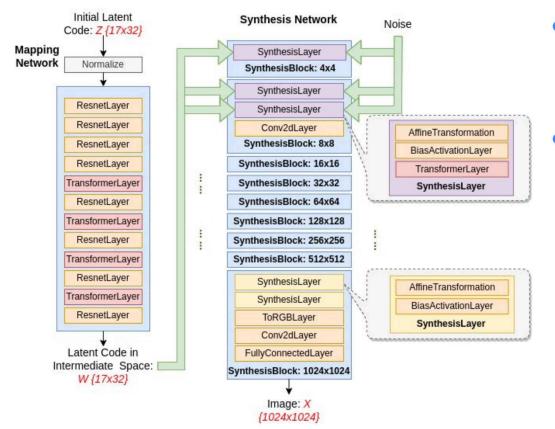
Traditional Transformer

- Self-attention with pairwise connectivity
- Highly-adaptive
- Around relational attention & dynamic interaction
- Quadratic operation

Bipartite Transformer

- Two types
 - Simplex-Attention: one direction
 - Duplex-attention: bidirectional
- Iteratively propagates information
- Computation of linear efficiency

Architecture of the Generator



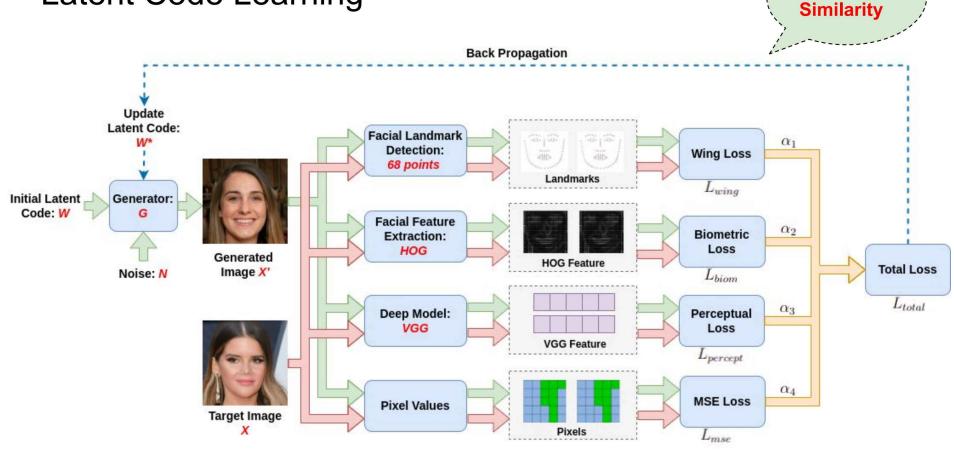
Mapping network

- feed-forward layers
- receive a randomly sampled vector
 Z
- output an intermediate vector W

Synthesis network

- W interacts directly with each transformer layer with added Gaussian noise to modulate the evolving image features X
- Finally, W is transformed into an image X as the output of the synthesis network
- 9 stacked synthesis blocks
- o from 4x4 grid to 1024x1024

Latent Code Learning



Maximize

Loss Function

Total loss

$$L_{total} = \alpha_1 L_{wing} + \alpha_2 L_{biom} + \alpha_3 L_{percept} + \alpha_4 L_{mse}$$

Wing Loss

$$L_{wing} = \begin{cases} \beta ln(1+|x|/\epsilon) & if|x| < \beta \\ |x| - C & otherwise \end{cases}$$

|x|: means the magnitude of the gradients between the landmark points of generated and target images

Perceptual Loss
$$L_{percept}(G(w),I) = \sum_{j=1}^4 \frac{\lambda_j}{N_j} \|F_j(G(w)) - F_j(I)\|_2^2$$

measure the high-level similarity between images perceptually based on Fi — the output feature of VGG-16 in layers: conv1 1, conv1 2, conv3 2 and conv4 2, respectively. Ni is the number of scalars in the j-th layer output

Biometric Loss

$$L_{biom} = 1 - \frac{HOG_{G(w)} \cdot HOG_I}{\|HOG_{G(w)}\| \|HOG_I\|}$$

The distance between two faces is computed using the cosine similarity score based on HOG features

MSE

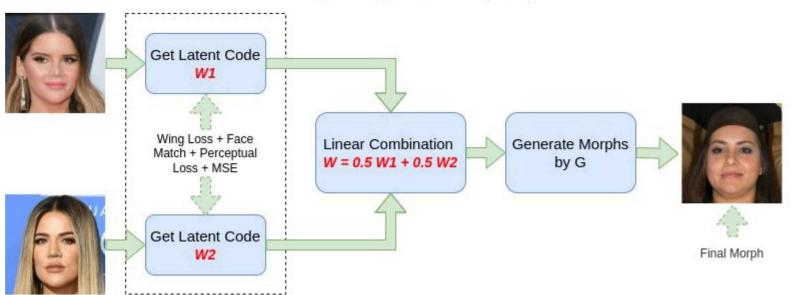
$$L_{mse}(G(w), I) = \frac{1}{N} ||G(w) - I||_2^2$$

Pixel-level Mean square error. N is the number of scalars of the image

Face Morphing

- ullet Given two face images I_1 and I_2 , with their respective latent vectors W_1 and W_2
- Face morphing is performed by a linear interpolation:

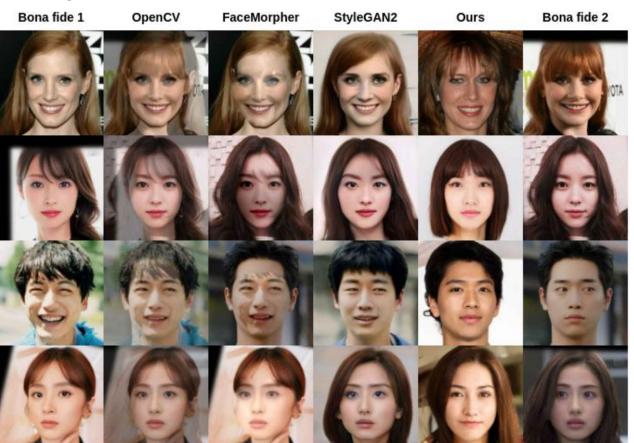
$$W = \lambda W_1 + (1 - \lambda)W_2, \lambda \in (0, 1)$$



Bona Fide Faces

- Doppelgänger Face Pairs
 - Celebrities that appear similar
 - Same gender and ethnicity
 - 153 pairs
 - o 1024x1024

Morphed Result



- OpenCV/ FaceMorpher:
 - misaligned pixels generating artifacts
 - ghost-like artifacts
- StyleGAN2
 - Synthetic-like generation artifacts

Ours

- More visibly realistic
- More natural

Vulnerability Test

- On 3 FR models
- Ideally, a strong morphing attack will have a high similarity score to the target identities
- Ours
 - Have same or even better ability to preserve the characteristic of identities
 - Also can generated visually realistic and natural faces

Mated Morphed Presentation Match Rate (MMPMR) - (%) at FMR=0.1%

Method	ArcFace	FaceNet	LBP
OpenCV	94.73	82.23	87.50
FaceMorpher	81.21	73.83	87.92
StyleGAN2	84.21	70.65	85.52
our-FaceNet	56.58	50.53	82.11
our-ArcFace	53.29	47.24	80.79
our-LBP	50.66	43.95	90.00
our-Percept	53.29	43.95	78.82
our-Percept+Wing	82.24	59.08	88.68
our-Percept + Wing + MSE	84.87	62.37	89.34
our-HOG	77.63	45.92	86.71
our-HOG+Percept	86.18	59.74	88.03
our-HOG+Percept+Wing	85.53	61.05	88.03
our-HOG+Percept-Wing+MSE	90.08	70.92	89.77

Limitations

- Local minimum of loss
 - Not all the optimization can lead to good results
 - Sometimes the learning converges on local minimum
- Time of learning latent code
 - Around 8 minutes with 1500 gradient descent steps per image