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Computer Vision (CV)

e It enables computers and systems to “see” , observe and understand the
content of the inputs, like images, videos, etc.

O “See”
m acquire information from the real world
o Observe

m derive meaningful information
o Understand
m take actions or make decisions based on that information
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Biometrics

e Used to label / describe individuals

e It combines CV and knowledge of human physiology and behavior
o Physiological characteristics
m related to the shape of the body
m e.g.fingerprint, palm, face, DNA, hand geometry, iris, retina, odor/scent
o Behavioral characteristics:
m related to the pattern of behavior of a person
m e.g. hand gesture, typing pattern, gaze pattern, voice, gait




Face Biometric

e One of the most expressive and informative biometric traits

e Many studies from the perspectives of various different disciplines
o ranging from CV and deep learning, to neuroscience and biometrics
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Face Analysis

e \With the development of computer hardware and imaging technology, face
related applications have been applied widely to daily lives

access control video surveillance

e The demands of face analysis are also growing quickly in recent years
e Automatic face analysis will be one promising tool in many areas in the
future



Data Types

e The types of raw data can be:

RGB Images Depth Maps Thermal Images Video




Morphing Attack - Morphed Faces Generation

® Face recognition systems (FRS) have emerged as a popular technique for person
identification and verification
® e.g., Automatic Border Control System
o verify a person’s identity with his electronic machine-readable travel document

(eMRTD)
o by comparing the face image of the traveler with a reference in the database
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Vulnerability of FRS

Bona fide Morphed Faces Bona fide

e FRS

o a popular technique for person
identification and verification

e Vulnerable to adversarial attacks
o although with high accuracy

e Attacks based on morphed faces
pose a severe security risk
o realistic enough to fool human
e Attack vs. Defense
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What's Morphing Attack

e Try to interfere with the operation of the FRS by presenting an attack at the
time of enroliment
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The system treats the criminal as the
. accomplice, and let him /her pass
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Existing Morphing Tools/Techniques

e Numerous easy-to-use morphing tools online
o e.g., MorphThing, 3Dthis Face Morph, Face Swap Online, Abrosoft FantaMorph,

FaceMorpher, MagicMorph

e Techniques in literature OpencCV
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Delaunay triangulation

Facial Landmark based Step 1 Get Facil Landmarks

e \Works by obtaining landmark points on facial
regions
o e.g., nose, eye, and mouth
e The landmark points obtained from two bona fide
faces are warped by moving the pixels to different,

more averaged positions _—
o e.g. Delaunay triangulation
m Affine transform
m Alpha blending

e Post-processing
O misaligned pixels generating artifacts
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o ghost-like artifacts




StyleGAN

Deep Learning based

e Most are based on Generative Adversarial
Networks (GAN)
e Most adopt CNN as basic architecture

. . . w1 w2
e \Works by embedding the images in the I © I e
intermediate latent space W= (1 —a)W1+alW2
o e.g. StyleGAN wl T
m Linear combination
m Synthesize using Generator re—r=

e Post-processing if needed
o Synthetic-like generation artifacts




Transformer based Morphing Attack
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e Generative Adversarial Transformer (GANformer) [1]
e StyleGAN

O

@)
O
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Monolithic latent space

Single global style latent code
Modulate whole scene uniformly
In one direction

e GANformer

O O O O O

Compositional latent space

Multiple local style latent components
Impact different regions in the image
Spatially finer control

In both directions
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[1] Hudson, Drew A., and Larry Zitnick. "Generative adversarial transformers." International Conference on Machine Learning. PMLR, 2021.




Bipartite Transformer
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(a) Self-Attention

e Traditional Transformer ®
o Self-attention with pairwise connectivity o
o Highly-adaptive u
o Around relational attention & dynamic u
interaction o

o Quadratic operation o

duplex-attention
(b) Bipartite Attention

Bipartite Transformer
Two types
Simplex-Attention: one direction
Duplex-attention: bidirectional
Iteratively propagates information
Computation of linear efficiency
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Architecture of the Generator
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Latent Code Learning
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Loss Function

e Total loss

Ltotal — aleing . 2 a2Lbz'om T a3Lpercept T a4Lmse

% Wing Loss
B = Bln(1 + |z|/€)
wing — II s C

[x|: means the magnitude of the gradients between the
landmark points of generated and target images

ifle| < B

otherwise
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«  Perceptual Loss
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Lyercept(G(w), 1) = Y T IF5(G(w)) = F(D)|l3
j=1 "
measure the high-level similarity between images
perceptually based on Fj— — the output feature of VGG-16
in layers: conv1_1, conv1_2, conv3_2 and conv4_2,

respectively. Njis the number of scalars in the j-th layer output

< Biometric Loss

HOGgw) - HOG
Lbiom =1 bl :

~ |HOG ¢ [ HOGY]|

The distance between two faces is computed using the
cosine similarity score based on HOG features

% MSE

B 1
N

Pixel-level Mean square error.
N is the number of scalars of the image

Lmse(G(w), I)

G(w) —I||3



Face Morphing

e Given two face images I, and I, , with their respective latent vectors W, and W,
e Face morphing is performed by a linear interpolation:

W = AW, + (1 — A)W,, A € (0,1)
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Bona Fide Faces

e Doppelganger Face
Pairs

o Celebrities that appear
similar

o Same gender and
ethnicity
153 pairs

o 1024x1024




Morphed Result

Bona fide 1 OpenCV FaceMorpher StyleGAN2 Ours Bona fide 2

e OpenCV/ FaceMorpher:
o misaligned pixels
generating artifacts
o ghost-like artifacts
e StyleGAN2
o  Synthetic-like
generation artifacts

e Ours
o  More visibly
realistic

o More natural




Vulnerability Test

e On 3 FR models

e [deally, a strong morphing
attack will have a high
similarity score to the target
identities

e OQurs

o Have same or even better ability
to preserve the characteristic of
identities

o Also can generated visually
realistic and natural faces

Mated Morphed Presentation Match Rate (MMPMR) - (%) at

FMR=0.1%
Method ArcFace FaceNet LBP
OpenCV 94.73 82.23  87.50
FaceMorpher 81.21 73.83  87.92
StyleGAN2 84.21 70.65  85.52
our-FaceNet 56.58 50.53  82.11
our-ArcFace 53.29 47.24  80.79
our-LBP 50.66 43.95  90.00
our-Percept 53.29 43.95 78.82
our-Percept+Wing 82.24 59.08  88.68
our-Percept+Wing+MSE 84.87 62.37 89.34
our-HOG 77.63 45.92  86.71
our-HOG+Percept 86.18 59.74  88.03
our-HOG-+Percept+Wing 85.53 61.05  88.03
our-HOG+Percept+Wing+MSE | 90.08 70.92  89.77




Limitations

e Local minimum of loss

o Not all the optimization can lead to good results
o Sometimes the learning converges on local minimum

e Time of learning latent code
o Around 8 minutes with 1500 gradient descent steps per image



