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MorphGANFormer: Transformer-based Face
Morphing and De-Morphing
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Abstract—Semantic face image manipulation has received
increasing attention in recent years. StyleGAN-based approaches
to face morphing are among the leading techniques; however,
they often suffer from noticeable blurring and artifacts as a
result of the uniform attention in the latent feature space. In this
paper, we propose to develop a transformer-based alternative
to face morphing and demonstrate its superiority to StyleGAN-
based methods. Our contributions are threefold. First, inspired
by GANformer, we introduce a bipartite structure to exploit
long-range interactions in face images for iterative propagation
of information from latent variables to salient facial features.
Special loss functions are designed to support the optimization of
face morphing. Second, we extend the study of transformer-based
face morphing to demorphing by presenting an effective defense
strategy with access to a reference image using the same gen-
erator of MorphGANFormer. Such demorphing is conceptually
similar to unmixing of hyperspectral images but operates in the
latent (instead of pixel) space. Third, for the first time, we address
a fundamental issue of vulnerability-detectability trade-off for
face morphing studies. It is argued that neither doppelganger nor
random pair selection is optimal, and a Lagrangian multiplier-
based approach should be used to achieve an improved trade-off
between recognition vulnerability and attack detectability.

Index Terms—transformer, face morphing, De-morphing.

I. INTRODUCTION

With the rapid development of deep-learning technology,
automatic face recognition (FR) has become a key method
in security-sensitive applications of identity management (e.g.
travel documents). However, the face recognition system
(FRS) is vulnerable to face morphing attacks [1], which aim
to create facial images that can be successfully matched to
more than one person. Existing face-morphing methods can
be classified into two categories. One is performed on the
image level via landmark interpolation, like OpenCV [2],
FaceMorpher [3], LMA [4], WebMorph [5]. The other works
are performed by manipulating latent codes of generative ad-
versarial networks (GAN), such as MIPGAN-II [6], MorGAN
[4], StyleGAN [7]. Both approaches have serious limitations.
For landmark-based methods, as the morphing process trans-
lates landmarks and the associated texture, misaligned pixels
tend to generate artifacts and ghost-like images, making the
images unrealistic (i.e., easy for a human observer to detect).
Similarly, for GAN-based methods, unpleasant visual artifacts,
such as noticeable blurring and abnormal image patterns, often
occur, often making morphed faces unnatural (see Fig. 1). It
is natural to seek an alternative approach to face morphing
attacks.

Transformer-based architectures have found successful ap-
plications in natural language processing [8]–[10], object
detection [11], image restoration [12], [13], video inpainting

[14], [15], image synthesis [16]–[21], and so on. Inspired
by the capability of exploiting the long-range dependency of
GANformer [17], we propose to develop the GANformer-
based morphing attack in a compositional latent space, as
shown in Fig. 1 (b). The compositional latent space is
composed of multiple latent components in local-style and
one latent component in global-style, respectively. Such a
compositional design allows us to have finer control of salient
regions (e.g., face in the foreground) than the less important
region (e.g., background). Meanwhile, MorphGANFormer is
bidirectional, allowing the propagation of information between
latent codes and image features in both directions. In addition
to long-range dependency, duplex attention on bipartite graphs
facilitates the synthesis of high-resolution by keeping compu-
tation linear.

Under the transformer-based framework, we focus on the
design of latent code in the compositional space. Unlike
GANformer [17] which simply adopts the loss function of
StyleGAN studies [7], [22], we have designed a class of loss
functions specifically tailored for face morphing applications.
Our design attempts to expedite the search for a suitable latent
code by combining the strengths of both landmark-based and
GAN-based approaches. Both facial landmarks and features
(e.g., histogram of orientated gradients [23]) are included as
content-related regularization terms. Style-related regulariza-
tion consists of VGG-based perceptual loss and pixel-based
MSE loss. The tradeoff between the style and context loss
terms allows us to strike an improved balance between visual
quality (i.e., fewer artifacts) and attack success (i.e., better
matching).

Like other security systems, morphing attacks and defenses
co-evolve in a never-ending race. Morphing and demorphing
[24], [25] are two sides of the same coin, although relatively
less attention has been paid to demorphing studies in the
literature. The other contribution of this work is to conduct a
dual study of demorphing in latent space, which complements
our construction of MorphGANFormer. For the first time,
we address a fundamental issue of vulnerability-detectability
tradeoff for face morphing studies - i.e., what pair of images
should be used in morphing study? A pair of similar images
(e.g., doppelganger [26]) might be desirable from a recog-
nition vulnerability perspective but suffers from being more
easily detectable (i.e., higher APCER/BPCER rates). On the
other hand, two random faces enjoy the advantage from the
attack detectability perspective, but sacrifice the recognition
vulnerability (i.e., lower MMPMR rate [27]). It is argued that
neither the selection of doppelgangers nor random pairs is
optimal and a Lagrangian multiplier-based approach should be
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Fig. 1. Illustration of latent code modulation of (a) StyleGAN and (b) Our MorphGANFormer. StyleGAN uses a single global-style latent code to modulate
the whole scene uniformly in one direction. Ours is a compositional latent code with 16 local- and one-global-style components to impact different regions in
the image allowing for spatially finer control over the generation process bidirectionally. Figure (c) shows some morphing results of StyleGAN-based model
and our MorphGANFormer (ours contain fewer visual artifacts).

used to achieve an improved trade-off between the recognition
vulnerability and the detectability of the attack [4]. The main
contributions of this paper are summarized below.
• Design a transformer-based GAN model with a composi-

tional latent space. It is made up of 16 local-style latent
code components and one extra global-style component
with 32 × 1 dimension for each. Different components
can impact different regions in the image, allowing for
spatially finer control over the generation process bidi-
rectionally.

• Design special loss functions to improve the performance
of the latent code optimization problem by maximizing
the similarity between the generated face and the target
face. Four types of loss function are adopted: biometric
loss, landmark-based loss, perceptual loss, and pixel-wise
mean square error (MSE).

• Extend the study of transformer-based face morphing
to demorphing using the same generator. With the final
morphed face and a given trusted live capture of one bona
fide face, we have shown how to successfully restore the
other bona fide face.

• Experimental results with both Doppelganger and random
selection to demonstrate the trade-off between recognition
vulnerability and attack detectability. We hope that this
line of research will lead to a deeper understanding
of adversarial attack and defense in the study of face
morphing and demorphing.

II. RELATED WORKS

A. Landmark-based Generation

Morphed face is initially performed by detecting facial
landmarks of two bona fide faces. The final morphed face
is generated by landmark interpolation and texture blending.
The landmark-based method, as the name suggests, works by
obtaining landmark points on facial regions, like the nose,
eyes, mouth, etc. The landmarks obtained from two bona
fide faces are warped by moving the pixels to different,

more averaged positions. There exist different procedures for
warping in the literature. Delaunay triangulation is a popular
one. The basic idea is to perform Delaunay Triangulation on
the three sets of landmarks (2 bona fides and their average
points) and do affine transform and warping. The two warped
faces will do alpha blending, and then the final morphed face
is generated.

The most popular methods contain OpenCV [2], FaceMor-
pher [3], LMA [4], WebMorph [5], etc. In the OpenCV [2]
algorithm, the landmarks of the bona fide faces are obtained
by Dlib [28] and then used to form Delaunay triangles [29],
which in turn are warped and mixed with alpha. FaceMorpher
[3] is also an open-source tool similar to OpenCV, but with
the STASM [30] landmark detector instead. Both algorithms
create morphs with noticeable ghosting artifacts, as the region
outside the area covered by these landmarks is simply aver-
aged. WebMorph [5] is an online landmark-based morphing
tool that requires 189 landmarks, to generate morphed images
with better alignment and of higher visual quality. Ghosting
artifacts are still visible and prominent around the hair and
neck area. Similar to OpenCV and FaceMorpher, LMA [4] is
performed by detecting facial landmarks, the mean face points
for each image are calculated and each image is then warped
to sit on these coordinates after performing the Delaunay
triangulation, but uses 194 points detected by an ensemble of
randomized regression trees [31]. One special is a combined
private Morphs tool used in the AMSL face morph image
database [32]. This tool can generate very realistic morphs
with virtually no ghosting artifacts, even around the hair and
neck area, thanks to the additional Poisson image editing.

B. GAN-based Generation
GAN-based model has made a major breakthrough in high-

quality image synthesis, especially on human faces [22].
Taking advantage of the advanced GAN architectures and
their ability to produce synthetic images, we proposed a
few GAN-based morphing approaches that avoid image-level
interpolation. It works by embedding the images into the
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Fig. 2. The pipeline of optimizing the latent code of the given face image.

intermediate latent space. First, two bona fide face images are
mapped into the latent space to obtain their latent codes. And
then a linear combination of two latent codes is made to obtain
a final latent code, which is put into the generator of the pre-
trained GAN model to synthesize the morphed image.

StyleGAN2 [7] is a morphing algorithm that can generate
realistic high-resolution faces. Based on StyleGAN [22], the
MIPGAN-II [6] was designed to generate images with higher
identity preservation by introducing a loss to optimize identity
preservation in the latent vector. MorGAN [4] is based on
automatic image generation using a specially designed GAN.
An enhanced version called CIEMorGAN [33] has also been
released.

C. De-Morphing
The common definition of demorphing is that by using one

bona fide identity as a reference image, the morphed face
image can be reverted (or demorphed) to reveal the identity
of the other bona fide subject. In [24], the authors reverse the
morphing operation to find the second bona fide by exploiting
the live image acquired from the first bona fide. In FD-GAN
[34], the authors designed a symmetric dual network and
adopted two layers of restoration losses to separate the second
bona fide’s face image. The basic idea is that it first restores the
image of the second bona fide from the given morphed input
using the first bona fide as a reference, and then tries to restore
the first bona fide from the morphed image with the restored
second bona fide as a reference. In [35], a conditional GAN
is designed to disentangle identity from the morphed image
using the pixel difference by minimizing conditional entropy.
Recently, [36] proposed a method to recover both bona fide
face images simultaneously from a single given morphed
face image without reference image or prior knowledge. Such
blind demorphing is conceptually similar to the unmixing of
hyperspectral images.

In addition, some works have been proposed that treat face
demorphing as a technique to detect reference-based morphing

attacks [37], [38]. For example, in [38], the authors apply a
fusion of two differential morphing attack detection methods,
i.e., demorphing and deep-face representations, for detection.
[25] focuses on the robustness of face demorphing and uses it
as a technique to protect face recognition systems against the
well-known threat of morphing.

III. METHODOLOGY

A. Transformer-based GAN

Most existing GAN-based models adopt CNN as the basic
architecture and rarely consider self-attention constructions. In
this work, we have designed a transformer-based GAN model
aiming to eliminate the blending artifacts, as well as, eliminate
the manipulation in the latent space, resulting in more visibly
realistic morphed faces. We applied the Generative Adversarial
Transformer (GANformer) [17] as our backbone to generate
high-quality morphing face images with 1024× 1024 resolu-
tion by linearly interpolating the latent codes of the two input
bona fide faces. The latent code is generated by improving the
similarity between the input bona fide image and the embedded
image created using a latent vector. In our work, we call the
MorphGANFormer morphing model.

MorphGANFormer contains a generator (G) that maps a
sample from the latent space to an image, and a discriminator
(D) that seeks to discern between real and fake images [39]. G
and D compete with each other through a minimax game until
they reach equilibrium [17]. The generator employs a bipartite
structure, called bipartite transformer. Traditional transformer
uses self-attention with pairwise connectivity, as shown in
Fig. 3 (a). It is a highly-adaptive architecture centered around
relational attention and dynamic interaction. However, the
dense and potentially excessive pairwise connectivity causes
quadratic mode of operation making it difficult to be extended
to high-resolution input image. Bipartite transformer adopts a
point-to-point mapping between individual latent components
and different regions of evolving visual features, which can
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Fig. 3. Self-Attention (a) and Bipartite Attention (b). In comparison to self-attention, bipartite attention allows long-range interactions, and evades the quadratic
complexity which self-attention suffers from.

enable long-range interactions across the image and maintain
the computation of linear efficiency, making scaling to high-
resolution synthesis easy. Main idea is to iteratively propagate
information from a set of latent variables to the evolving visual
features and vice versa to support the refinement of each in
light of the other.

Fig. 3 (b) shows two types of attention operations over the
bipartite graph: simplex and duplex. Simplex attention permits
communication in one direction, from the latents to the image
features, while duplex attention enables both top-down and
bottom up connections between latents and image features.
In generateor, it iteratively propagates information between
latent components and the image features bidirectionally, to
support finer refinement. It can maintain computation of linear
efficiency, making scaling to high-resolution synthesis is easy.

The architecture of MorphGANFormer generator is illus-
trated in Fig. 4. It contains two parts: mapping network and
synthesis network. The mapping network is composed of
several feed-forward layers that receive a randomly sampled
vector Z and output an intermediate vector Z ′, which in
turn interacts directly with each transformer layer through the
synthesis network with added noise to modulate the features
of the evolving image. Finally, the intermediate vector Z ′ is
transformed into an image X ′ as the output of the synthesis
network.

The latent code Z, has the dimension of 17×32, denoted as
[z1, z2, ..., z16, z17], in which [z1, ..., z16] are 16 components
of the local-style latent code that are used to interact with
the feature of the image through spatial attention, and z17
is a global-style component to globally modulate the feature
of the image. The dimension of each component is 32 × 1.
Figs. 1 (a) and (b) show the main difference in latent space
between StyleGAN and MorphGANFormer. StyleGAN uses
one global monolithic latent to impact the evolving image
features of the whole scene uniformly, but in our work, we
design a compositional latent space making the latent and
image features attend to each other to capture the scene
structure.

The synthesis network contains nine stacked synthesis
blocks starting from a 4×4 grid and up to produce a final high-
resolution image with 1024× 1024 resolution. In a synthesis
block, the bipartite (duplex) attention operation propagates
information from the latent space to the image grid, followed

by convolution and upsampling. Gaussian noise is added to
each of the activation maps before the attention operations.
A different sample of noise is generated for each block and
interpreted on the basis of the scaling factors of that layer. The
most important part of the synthesis block is the Synthesis
Layer. For the first 8 blocks, the Synthesis Layer contains an
affine transformation layer (translation, resizing, and rotation),
a bias activation layer, and a transformer layer with bipartite
attention operation. The blocks 16 × 16 to 512 × 512 have
the same architecture as the block 8 × 8 which contains
two Synthesis and one Conv2d layer. The Conv2d layer is
the convolution layer with optional up-sampling or down-
sampling. The last block removes the attention operation and
adds an RGB layer to map the dense image features to RGB
images.

B. Latent Code Learning

In StyleGAN [7], [22], it uses a latent code to control the
style of all features globally. Although it can successfully
disentangle global properties, it is more limited in its ability
to perform spatial decomposition, as it does not provide a
direct means to control the style of localized regions within
the generated image. Luckily, the bipartite transformer offers
a solution to meet this goal. Instead of controlling the style of
all features globally, this attention layer can perform region-
wise adaptive modulation. This approach achieves layer-wise
decomposition of visual properties, allowing the model to
control global aspects of the picture, such as pose, lighting
conditions, or color schemes, in a coherent manner over the
entire image.

In our method, we use the MorphGANFormer generator
that is well trained in a large FFHQ face database [22] with
a resolution of 1024 × 1024 as a basic module to obtain the
latent code of the input image. The pipeline is shown in Fig.
2. The pipeline follows a pretty straightforward optimization
framework used in [40], [41]. The bipartite attention operation
can propagate information from the latent to the image grid,
followed by convolution and upsampling. These are stacked
multiple times starting from a 4×4 grid and up to 1024×1024
high-resolution images.



5

Fig. 4. The architecture of generator G in MorphGANFormer, which contains a mapping network that maps a randomly sampled vector into a intermediate
space and a synthesis network that generates a image based on the latent code.

Fig. 5. Similarity score distribution of bona fide pairs on Doppelgänger and
FRGC-morph datasets.

C. Loss Functions

To measure the similarity between the input image X
and the generated image G(Z) (X ′) using the learned latent
code during optimization, we employ a loss function that
is a weighted combination of the Wing Loss [42] based on

facial landmarks, the biometric loss based on the distance of
matching two faces, VGG-16 perceptual loss [43], and pixel-
wise mean square error (MSE):

Ltotal = α1Lwing + α2Lbiom + α3Lpercept + α4Lmse (1)

where α1, α2, α3 and α4 are weights.
We employ two loss functions related to face content.

One is Wing Loss [42], which was originally proposed for
facial landmark localization to improve deep neural network
training ability for small and medium range errors in sample
landmarks. The formula is defined as follows:

Lwing =

{
βln(1 + |x|/ε) if |x| < β
|x| − C otherwise

(2)

where the nonnegative factor β sets the range of the nonlinear
part to (−β, β), ε limits the curvature of the nonlinear
region, |x| means the magnitude of the gradients between the
landmark points of G(Z) and X . C = β − βln(1 + β/ε) is
a constant that smoothly links the linear and nonlinear parts
defined in part.

The other is biometric loss by calculating the matching
distance of the faces. This loss is used to handle the biometric
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Fig. 6. The pipeline of face morphing.

Fig. 7. The pipeline of face demorphing.

aspect of morphing and to make sure that the morphed faces
are related to the original bona fide faces. The matching
distance can induce a penalty for the generator during the
latent code optimization process if the morphed outputs are not
comparable to the original images in terms of biometric utility.
The distance between two faces is calculated using the cosine
similarity score based on the histogram of oriented gradients
(HOG) [23] features, which can be defined as:

Lbiom = 1−
HOGG(Z) ·HOGX

‖HOGG(Z)‖‖HOGX‖
. (3)

The study [44], [45] found that the learned filters of the
VGG image classification model [46] are excellent general-
purpose feature extractors, so they are used to measure the
high-level similarity between images perceptually by the co-
variance statistics of the extracted features, which is formal-
ized as perceptual loss [43]. For the perceptual loss term
Lpercept in Eq. 1, we define it as:

Lpercept(G(Z), X) =

4∑
j=1

λj
Nj
‖Fj(G(Z))− Fj(X)‖22 (4)

where G(·) is the well trained MorphGANFormer generator,
Z is the latent code to optimize, G(Z) is the embedded image,
X ∈ Rn×n×3 is the target image, N is the number of scalars

in the image (i.e., N = n × n × 3), Fj is the output of the
features of the VGG-16 layers conv1 1, conv1 2, conv3 2, and
conv4 2, respectively, Nj is the number of scalars in the output
of the j-th layer, λj is a factor. For the pixel-wise MSE loss
term Lmse, it is defined as:

Lmse(G(Z), X) =
1

N
‖G(Z)−X‖22. (5)

The reason for choosing perceptual loss together with pixel-
wise MSE loss is that pixel-wise MSE loss alone cannot easily
find a high-quality latent vector. Perceptual loss can guide
optimization to the right region of the latent space acting as a
regularizer.

Given two face images B1 and B2, with their respective
latent vectors Z1 and Z2, face morphing is calculated by linear
interpolation:

Z = λZ1 + (1− λ)Z2, λ ∈ (0, 1) (6)

and the final morphing result is generated from the generator
G using the latent code Z. The commonly used λ is 0.5.

D. Face Morphing and De-Morphing

Figs. 6 and 7 show the main pipelines of face morphing and
demorphing, respectively.



7

Fig. 8. Some sample pairs of bona-fide face images from the Doppelgänger dataset (note that these look-alike pairs do not have biological connections).

Fig. 9. Some sample pairs of bona-fide face images from the FRGC-morph dataset.

The basic idea of embedding a given image onto the
manifold of the pre-trained generator is the following. With
an initial latent code Z as the starting point, the model tries
to find an optimized latent code Z∗ that minimizes the loss
function defined to measure the similarity between the target
image and the image generated using Z∗. For the initialization
of latent codes, we use the mean Z of 10,000 latent vectors that
are randomly sampled from a uniform distribution of [-1,1],
and we expect the optimization to converge to a vector Z∗ so
that the generated image X ′ has high similarity to the target
image X . We also consider noise-space optimization [47] to
complement latent-space embedding, which further improves
quality.

The basic idea of demorphing [24] is to try to reverse the
morphing process. In the morphing attack, a morphed image
can be treated as a linear combination M = B1+B2, where B1

and B2 are the bona fide faces of two subjects. In a general
face verification process without a morphing attack, M can
be treated as a combination of two identical face images of

one person. In the morphing attack situation, during the face
verification process, the system receives B̂1, a live captured
variant of B1, and the demorphing task is to calculate the
demorphed image B̂2 by removing B̂1 from M, which is
B̂2 =M − B̂1.

Given the live trusted capture of one bona fide face image
B1 and the morphed face image M , with their respective latent
vectors Z1 and Z, face demorphing is calculated in latent space
by:

Z2 =
Z − λZ1

(1− λ)
, λ ∈ (0, 1) (7)

and final demorphing result is generated from the generator G
using the latent code Z2.

IV. EXPERIMENTAL SETUP

A. Database Description

Table I presents the database used in our experiment: the
newly constructed Doppelgänger face morphing database and
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Fig. 10. Face morphing results in the Doppelgänger Morphs database without any post-processing.

TABLE I
THE DATA USED IN OUR EXPERIMENT. ONE IS THE NEWLY CONSTRUCTED

DOPPELGÄNGER FACE MORPHING DATABASE AND THE OTHER ONE IS
RECONSTRUCTED FRGC-MORPH DATASET.

Database Subset #Number Resolution

Doppelgänger

bona fide 153 pairs 1024x1024
trusted live captures 306 1024x1024
FaceMorpher 150 1024x1024
OpenCV 153 1024x1024
StyleGAN2 153 1024x1024
MorphGANFormer 153 1024x1024

FRGC-morph

bona fide 204 pairs 1024x1024
trusted live captures 408 1024x1024
FaceMorpher 204 1024x1024
OpenCV 204 1024x1024
StyleGAN2 204 1024x1024
MorphGANFormer 204 1024x1024

reconstructed FRGC-morph dataset. Both are composed of
bona fide faces, corresponding trusted live captures, four types
of morphing results via OpenCV, FaceMorpher, StyleGAN2
and our MorphGANFormer.

Figs. 8 and 9 shows some pairs of bona fide face images
from Doppelgänger and FRGC-morph dataset. Note that for
the former we are guaranteed that the pair will look similar;
for the latter, we have adopted a strategy of random pairing
so the likelihood of obtaining two similar bona fide images is
low.

We use the real images in two databases as bona fide faces.
The first is the Doppelgänger dataset in which a name-pair
list is created to gather the faces of celebrities that look alike,
with the same gender and ethnicity. All faces are rotated to
align the eyes on a horizontal line. Only one image per identity
is considered. Finally, we obtained 153 pairs (95 female; 58
male) with the size of 1024 × 1024 resolution. The second
dataset is constructed from FRGC [48]. All faces are cropped,
aligned, and resized to 1024× 1024 resolution. Subjects with
the same gender are randomly selected to compose bona fide
pairs for face morphing. Each subject is selected only once.
Finally, we get 204 pairs (112 male and 92 female). For both
datasets, we obtain one extra image for each subject as a
trusted live capture for de-morphing task. Fig. 5 illustrates
the different distributions of similarity scores between two
bona fide faces per pair in the Doppelgänger and FRGC-
morph datasets using FaceNet [49] feature, which shows that
the Doppelgänger pairs have higher similarity scores than the
FRGC-morph.

B. Experimental Setup

For the latent code initialization, we use the mean Z
of 10,000 latent vectors that are randomly sampled from a
uniform distribution of [-1,1]. For perceptual loss, we choose
pre-trained VGG-16 as the backbone network to extract image
feature. For Wing loss, we use dlib toolbox [28] to detect 68
facial points for calculation. For the distance between the two
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Fig. 11. Some demorphed results on Doppelgänger dataset.

faces, we use HOG feature [23] of the faces to calculate the
matching score. We use Adam optimizer with a learning rate
of 0.01 to optimize the latent code learning procedure with
α1=0.02, α2=1.0, α3=1.0, and α4=1.0 for loss functions. We
set 1,500 gradient descent steps for the optimization, and keep
the latent code with the lowest loss value for generation.

C. Vulnerability Test

We evaluate the vulnerability of three face recognition
models to the morphing attacks created by our morphing
framework. ArcFace [52] introduced Additive Angular Margin

TABLE II
MMPMR (%) ON DOPPELGÄNGER AND FRGC-MORPH DATABASE.

Dataset Morph Type ArcFace FaceNet LBP

Doppelgänger

OpenCV [2] 94.73 82.23 87.50
FaceMorpher [3] 81.21 73.83 87.92
StyleGAN2 [7] 84.21 70.65 85.52
MorphGANFormer 90.08 70.92 89.77

FRGC-morph

OpenCV [2] 87.75 74.51 94.61
FaceMorpher [3] 80.39 72.06 85.78
StyleGAN2 [7] 38.73 35.78 78.43
MorphGANFormer 48.04 42.65 84.80
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Fig. 12. Some demorphing results using different inputs on Doppelgänger dataset. (a) The inputs are morphed faces combined by identity A and B, and
trusted live captures of identity C; (b) The inputs are real faces of identity B as morphed images, and real faces of identity A as trusted live captures; (c) The
inputs are real faces A’ as morphed images, and the other real faces A of the same identity as trusted live captures.

TABLE III
MMPMR (%) WITH ABLATION STUDY ON DOPPELGÄNGER DATABASE.
Loss ArcFace FaceNet LBP
BiomFaceNet 56.58 50.53 82.11
BiomArcFace 53.29 47.24 80.79
BiomLBP 50.66 43.95 90.00
BiomHOG 77.63 45.92 86.71
Percept 53.29 43.95 78.82
Percept+Wing 82.24 59.08 88.68
Percept+Wing+MSE 84.87 62.37 89.34
BiomHOG+Percept 86.18 59.74 88.03
BiomHOG+Percept+Wing 85.53 61.05 88.03
BiomHOG+Percept+Wing+MSE 90.08 70.92 89.77

loss to improve the discriminative ability of the face recogni-
tion model. It scored state-of-the-art performance on several
face recognition evaluation benchmarks such as Labeled Faces
in the Wild (LFW) [56] 99.83% and YouTube Face (YTF) [57]
98.02%. We use an ArcFace model based on ReseNet-100 [58]
architecture pre-trained on a refined version of the MS-Celeb-
1M dataset (MS1MV2) [59] to extract face features. FaceNet
[49] directly learns an embedding mapped from input to an
Euclidean space in which the Euclidean distance indicates the
similarity of the face. It uses triplets of tightly cropped face
patches generated by an online triplet mining method to train
the network, and its output is a compact 128-D embedding.
Local Binary Pattern (LBP) [60] is a hand-crafted feature that
describes the texture characteristics of surfaces. By applying
LBP, the probability of the texture pattern can be summarized
into a histogram. It is a commonly used feature in face
recognition domain.

Dlib face detector [28] is used to segment the face region.
The cropped face is normalized according to the eye coordi-
nates and resized to a fixed size of 224×224 pixels. The single

feature extraction (ArcFace, FaceNet, and LBP) procedure is
performed on the processed faces. Ideally, a strong morphing
attack will have a similar and high similarity score to the target
identities. We present the vulnerability results in a quantifiable
manner by giving the Mated Morphed Presentation Match Rate
(MMPMR) [27] based on the decision threshold at the false
match rate (FMR) of 0.1%. Note that all vulnerability results
are presented on the testing data.

Table II shows the MMPMR (%) values of different morph-
ing methods using ArcFace, FaceNet and LBP features. And
Fig. 10 shows some morphing samples in the Doppelgänger
database. We can see that for landmark-based morphing at-
tacks, like OpenCV and FaceMorpher, it has high MMPMR
values, indicating it highly preserves the characteristic of both
bona fide identities, but the image artifacts caused by blending
on image level are obvious too. In contrast, GAN-based
morphing methods improve the visual quality of morphed
images. However, synthetic-like generation artifacts, as shown
in the StyleGAN2 attack, make morphing faces less realistic
and natural. Our model has the same or even better ability to
preserve the facial identities as landmark-based models and
can also generate visually realistic and natural faces.

We also did an ablation study with different loss functions
on Doppelgänger dataset as shown in Table III. The first part
shows some results using different facial features to calculate
the face matching distance. From the second and third parts,
we can see that, with the combination of more loss functions,
the MMPMR value increases.

D. Detectability Analysis
To thoroughly evaluate the detectability of MorphGAN-

Former attacks, we selected several popular methods used in
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TABLE IV
PERFORMANCE (%) COMPARISON OF MAD ON OPENCV, FACEMORPHER, STYLEGAN2, AND OUR METHOD. ACCU. - ACCURACY.

OpenCV [2] FaceMorpher [3] StyleGAN2 [7] MorphGANFormer
Dataset MAD Method Accu. D-EER ACER Accu. D-EER ACER Accu. D-EER ACER Accu. D-EER ACER
Doppelgänger MobileNetV2 [50] 66.45 36.18 49.50 66.00 42.36 50.82 66.45 37.50 49.51 65.57 59.87 50.82

NasNetMobile [51] 68.64 35.53 43.42 65.12 45.02 49.26 62.50 45.56 52.63 61.84 65.13 53.62
ArcFace [52] 66.23 40.13 40.79 62.91 46.35 46.11 59.43 46.88 50.99 58.77 51.97 51.97
MB-LBP [53] 66.67 44.24 47.53 67.99 43.02 46.09 67.11 45.39 46.88 64.47 51.32 50.82
FS-SPN [54] 48.68 44.74 43.59 45.47 47.67 48.15 50.00 42.11 41.61 44.96 50.66 49.18
MixFaceNet-MAD [55] 67.76 34.21 33.55 63.36 39.54 40.31 57.02 50.66 49.67 57.89 46.71 48.36

FRGC-morph MobileNetV2 [50] 44.28 28.43 42.16 44.12 36.27 42.40 44.77 18.26 41.42 33.33 57.35 58.58
NasNetMobile [51] 71.57 29.53 32.60 69.93 32.84 35.05 68.46 33.82 37.25 59.48 49.02 50.74
ArcFace [52] 66.34 43.63 46.94 65.36 44.73 48.41 66.67 37.25 46.45 68.79 38.73 43.26
MB-LBP [53] 67.16 43.75 46.57 66.67 42.65 47.30 63.73 51.72 54.90 66.50 49.02 47.55
FS-SPN [54] 55.72 46.57 47.43 54.90 47.06 48.65 72.06 24.02 22.92 58.33 45.59 43.50
MixFaceNet-MAD [55] 67.48 33.33 39.71 65.52 40.20 42.65 62.91 44.12 46.57 61.11 49.02 49.26

Fig. 13. Similarity score distribution between restored faces and real faces of the bona fide on (a) Doppelgänger and (b) FRGC-morph datasets based on
FaceNet feature.

face recognition [52], pre-trained deep models [50], [51], [61],
[62] on ImageNet [63], and existing morphing attack detection
methods [53]–[55], [64], [65], for comparison. We measure
the attack detection performance on our generated attacks, and
other types of attacks, like OpenCV [2], FaceMorpher [3], and
StyleGAN2 [7], based on the bona fide faces in Doppelgänger
and FRGC-morph databases.

We evaluate the detectability of our attacks as unknown
attacks, i.e., novel attacks unknown to the detection algorithm.
In this case, the training data come from the attacks of
LMA [4], WebMorph [5], AMSL [32], MorGAN [4] and
CIEMorGAN [33] attacks introduced in [66], and their corre-
sponding bona fide faces, which contains 1,838 images (bona
fide: 918; morphed: 920) in total. The test data are from
Doppelgänger (153 morphed + 306 bona fide) and FRGC-
morph (204 morphed + 408 bona fide) datasets, respectively.
We trained a binary classifier using the training data. After the
detector is well trained, it is used to predict bona fide and our
MorphGANFormer attacks (or OpenCV [2], FaceMorpher [3],
StyleGAN2 [7] attacks).

Following previous morphing attacks detection (MAD)
studies [67], [68], we report performance using accuracy, D-
EER, and ACER. Detection Equal-Error-Rate(D-EER) is the
error rate for which both BPCER and APCER are identical.
The average classification error rate (ACER) is calculated
by the mean of the APCER and BPCER values. The attack

TABLE V
DEMORPHING ACCURACY (%) ON DOPPELGÄNGER AND FRGC-MORPH.

ArcFace FaceNet LBP
Doppelgänger Pairs 54.90 62.75 88.24
FRGC-morph Pairs 29.94 37.25 68.14

presentation classification error rate (APCER) reports the pro-
portion of morph attack samples incorrectly classified as bona
fide presentation, and the Bona Fide Presentation Classification
Error Rate (BPCER) refers to the proportion of bona fide
samples incorrectly classified as morphed samples. The results
are shown in Table IV. Compared to the OpenCV, FaceMor-
pher, and StyleGAN attacks, the MorphGANFormer attacks
are more challenging. Unlike vulnerability, we note that the
detectability performance gap between the Doppelgänger and
FRGC datasets is small.

E. Performance of De-morphing

To quantitatively evaluate the performance of the demorph-
ing result, ArcFace, FaceNet, and LBP are adopted to compare
the restored facial image B̂2 with B2 and B1, respectively.
When the system determines that B̂2 matches B2, but does
not match B1, the demorphing is considered successful. We
use a restoration accuracy introduced in FD-GAN [34] as a
measure metric to check the demorphing performance. In our
paper, we termed restoration accuracy as demorphing accuracy.
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The demorphing accuracy is defined as the percentage of the
number of successfully demorphed facial images in the total
number of demorphed facial images. The decision threshold
for similarity scores is set as the value of the false match rate
(FMR) at 0.1%. Table V shows the result.

Fig. 11 shows some results of face demorphing on Dop-
pelgänger dataset. We use morphed face and one trusted live
capture of bona fide 1 to restore the face of bona fide 2, as
shown in column ’Demorphed’. It can be clearly seen that
demorphed image has a good resemblance to the face of bona
fide 2, justifying the effectiveness of our defense strategy in
the latent space.

Fig. 12 shows some results using randomly selected inputs
to do demorphing. Fig. 12 (a) uses a morphed face generated
by bona fide A and B, and the trusted live capture from a
third identity C, as input. Fig. 12 (b) uses a real face image
of identity B as morphed face to be input to the demorphing
model, and the other real face image of identity A as the
trusted live capture. Fig. 12 (c) applies two face images of the
same identity as inputs. The demorphed results are various
and uncontrollable with low quality. Obvious artifacts can be
easily spotted.

Fig. 13 presents the similarity scores distribution between
the demorphed faces of bona fide 2 and real faces of bona
fide 2 on two datasets based on FaceNet feature. It can be
seen that demorphing can achieve reasonably good matching
scores on both datasets, implying the detectability of our
defense strategy in the latent space. Between Doppelganger
and FRGC, we observe that FRGC has lower matching scores
than Doppelganger, suggesting less vulnerability. The choices
of bona fide pair for face morphing, which is related to
the trade-off between detectability and vulnerability, deserves
further systematic study.

V. CONCLUSION AND FUTURE WORK

Face morphing attacks have received increasing attention
in recent years. Generation approaches such as GAN-based
are among the leading techniques. However, existing methods
suffer from noticeable blurring and synthetic-like generation
artifacts. In this paper, we designed a transformer-based alter-
native to face morphing, which demonstrated its superiority to
StyleGAN-based methods. Four particular loss functions were
employed to maximize the similarity between the generated
face image and the target face image. We also extended the
study of transformer-based face morphing to demorphing, the
dual operation. Future work includes an improved understand-
ing of the trade-off between vulnerability and detectability as
well as other morphing approaches such as diffusion models
[69].
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